Monday, January 13, 2020

Impotent Natural Killers by Cancer Stem Cells and Ageing

Cancer stem cells have been found, through various mechanisms to alter the sentinel function and innate, immune surveillance of Natural Killer cells (NK). In senescent cells that have stopped cell division, including in cancer stem cell niches and NK induced vascular remodeling (as found in the developing placenta) NK's sentinel vigilance is also reduced.

Senescence-associated mitochondrial dysfunction, a significant trigger of multiple dimensions of the senescent phenotype is caused by disruption of normal mitochondrial autophagy (mitophagy). Mitophagy increases with aging and this age-dependent rise is abrogated by PINK1 or parkin deficiency. Deletion of a p53 response element on PINK1 promoter impacts p53-mediated PINK1 transcriptional repression. This p53-mediated negative regulation of autophagy has been found to be PINK1-dependent and constitutes a p53-PINK1 loop in nucleus and cytoplasm.

Further, mitophagy controls the activities of tumor suppressor p53 to regulate, at least hepatic cancer stem cells via Nanog. Prostate cancer cells escape NK attack by Nanog down-regulating ICAM1 (LFA1), to which NK would normally bind its target. In lung cancer NK have been found to limit the efficient clearance of senescent tumor cells from the mouse lung after p53 restoration. This indicated p53 may promote conditions for cellular survival and NK induced vascular remodeling or angiogenesis, necessary for the growth of tumors.

When under stress and inner mitochondrial membrane pressure gradient moves toward depolarization, Pink1 slots into the membrane, binds and phosphorylates p53 at Serine 392 (p53s392) and aids phagophore formation to enhance mitophagy. Mitophagy traps cytoplasmic p53s392, which reduces its transport to the nucleus where it would otherwise disrupt transcription of Nanog. (As illustrated below). 
Activated p53s392 nucleoside concentrations are effected by mitophagy
On the other hand, the sentinel function of NK may be subject to this PINK1 mediated mitochondrial switch. In prostate cancer cells Nanog promoted ICAM1 transcription required for NK binding target and cell killing. In prostate cancer cells Nanog over-expression restricts ICAM1, which would promotes tumor formation. (As illustrated below). Investigating further, the direct functional link between p53 and ICAM-1 in senescence and age-related disorders appears to be deeply integrated in mitophagy, senescence and immunity.

Nanog over-expression appears to be deterministic 
In stem cells where normal expression of Nanog transcribes ICAM1 and cancer stem cells where over-expression of Nanog restricts ICAM1, the variable PINK1-p53 switch may represent a "canary" that signals the state of  mitochondrial health to sentinel NK. However in some cancer cells where normal mitophagy is impaired and Nanog expression is restricted by p53s392, other p53 isoforms may directly promote the transcription of ICAM1.

In  two manipulation experiments using five different fibroblast cell lines that accelerated development of senescent associated secretory phenotypes a striking result was observed: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated pro-malignant paracrine signaling activities. Experiments show that PINK1 and Parkin, which are regulated by p53 specifically regulate mitochondrial antigen presentation of both MHC classes.

So, the question is whether the p53-PINK1 mitochndrial switch acts as cell-health "canary" for sentinel NK, where its inherent variables and regulatory loop may be fertile ground for the challenges of developing cancers? 

No comments:

Post a Comment