Participants with a valid heart disease phenotype (atherosclerosis) were identified in a MESA blood pressure analysis conducted over 10 years. The valid group varied from 770 to 1113 patients from whom further blood analysis queried a primary and exploratory hypothesis of immune cell subsets. Four statistically significant innate cell subsets were discovered to be associated with Systolic blood pressure (SBP); Natural Killer (NK) cells, gamma delta T cells and classical monocytes.
Separately, an analysis of 7017 individuals from 6 international studies of gene expression signatures for SBP, diastolic blood pressure (DBP) and hypertension (HTN) found 7717 genes of which 34 were most differentialy expressed. Enrichment analysis for the systolic and diastolic gene group's associated to NK cell mediated cytotoxicity and 13 other pathways including antigen processing and inflammatory response, pointing strongly to innate and adaptive immunity. MYADM was the only gene identified for all groups SBP, DBP and HTN.
MYADM controls endothelial barrier function through ezrin, radixin, and moesin (ERM)-dependent regulation of ICAM-1 expression. ERM expression is required for ICAM-1 expression in response to MYADM suppression or TNF-α. ICAM-1 is a paradigmatic adhesion receptor that regulates leukocyte adhesion together with integrin LFA-1. This connection between endothelial membrane and cortical actin cytoskeleton appears to modulate the inflammatory response at the blood tissue barrier.
Pressure overload activates the sympathetic nervous system (SNS) and up-regulates p53 expression in the cardiac endothelium and in bone marrow (BM) cells. Increased p53 expression promotes endothelial-leukocyte cell adhesion and initiates inflammation in cardiac tissue, which exacerbates systolic dysfunction. SNS activates, at least by significant increase of circulating norepinephrine (NE), which up-regulates p53 expressions, while forced expression of p53 increased ICAM-1 expression.
On endothelial cells SNS is mediated via catecholamine-β2-adrenergic signaling, which up-regulates the production of reactive oxygen species (ROS), activates p53 and induces cellular senescence. Immune cells, including macrophages, monocytes, NK cells, B and T cells express the β2-adrenergic receptor and catecholamine. During pressure overload, NE cultured macrophages up-regulated p53 expression, whereas introduction of p53 increased Itgal (LFA-1) expression (which binds ICAM-1). Treatment with NE increased ROS, which was attenuated after inhibition of β2- adrenergic signaling in macrophages. Endothelial cell–macrophage interaction via NE-ROS-p53 signaling induces up-regulation of adhesion molecules, thus contributing to cardiac inflammation and systolic dysfunction.
During hypertension the vascular endothelium activates monocytes, in part through ROS by a loss of nitric oxide (NO) signaling, increased release of IL-6, hydrogen peroxide and a parallel increase in STAT activation in adjacent monocytes. NO inhibits formation of intermediate monocytes and STAT3 activation. Humans with hypertension have increased intermediate and non-classical monocytes and intermediate monocytes demonstrate evidence of STAT3 activation. Mice with experimental hypertension exhibit increased aortic and renal infiltration of monocytes, dendritic cells, and macrophages with activated STAT3.
A senescence-associated secretory phenotype (SASP) was induced in epithelial cells after DNA damage of sufficient magnitude. In premalignant epithelial cells SASPs induced an epithelial–mesenchyme transition and invasiveness, hallmarks of malignancy by a paracrine mechanism that largely depended interleukin (IL)-6 and IL-8. Strikingly, loss of p53 and gain of oncogenic RAS exacerbated the pro-malignant activities. This suggests a cell-non-autonomous mechanism by which p53 can restrain and oncogenic RAS can promote the development of age-related cancer by altering the tissue microenvironment. Oncogenic signaling pathways inhibit the p53 gene transcription rate through a mechanism involving Stat3, which binds to the p53 promoter in vitro and in vivo. Blocking Stat3 in cancer cells up-regulates expression of p53, leading to p53-mediated tumor cell apoptosis.
Induced stretch or stretch from pressure overload may engage a non-autonomous, p53 centric micro-mechanical mechanism that escalates or deescalates innate responses against cells functioning outside the mechanical ranges that macrophages or NK cells permit. Thus, the neuro-immune extension through SNS signaling, may begin with circulating blood pressure or stretch promoted through inflammation.