Enormously complex signaling exists in the communication of antigens, receptors and ligands in DNA pathways between Natural Killer cells (NK) and target cells with which they interact. Based on observations, following NK formation of an immune synapse with its target cell two outcomes occur most often, termination or differentiation. The innate immune system comprises multiple cell types that are present and differentiated in tissues, but the predatory-like activity of NK has led to the general perception of its role in the immune system's front line.
As we have articulated many times on this blog, immunity and reproduction are tied, originally through allorecognition to the conserved p53-mdm2 axis. Further, it has become abundantly clear that auto-regulation of p53 occurs in multiple gene positive and negative feedback loops including mdm2. NK performance in young versus older patients showed a reduced capacity for, synaptic polarization and perforin release into the immune synapse before killing target cell. Further that the reduced release of perforin also reduced the capacity for NK to clear senescent cells associated with aging.
As we have articulated many times on this blog, immunity and reproduction are tied, originally through allorecognition to the conserved p53-mdm2 axis. Further, it has become abundantly clear that auto-regulation of p53 occurs in multiple gene positive and negative feedback loops including mdm2. NK performance in young versus older patients showed a reduced capacity for, synaptic polarization and perforin release into the immune synapse before killing target cell. Further that the reduced release of perforin also reduced the capacity for NK to clear senescent cells associated with aging.
The activation of mitogen‐activated protein kinases (MAPK) is critical for lytic granule (perforin-granzyme) polarization, granule exocytosis and NK Cytotoxicity. It is possible that these proximal signalling events are compromised by aging. In addition, the studied p53 mutants regulated MAP2K3 gene whereas ectopic expression rescued the proliferative defect induced by mutant p53 knockdown.
In one series of experiments it was shown that the mutational status of p53 can facilitate cytotoxicity and different T cell recognition patterns. The p53 protein is presented by MHC molecules and the differential T cell recognition patterns seem confined to p53 as an antigen. The paper suggests p53 may behave differently to other classical tumor antigens, therefore a biomarker for immunotherapy targeting p53 should be the type of mutation expressed rather than protein levels only.
As previously reported, cytoskeleton superfamily member Talin1 has been uniquely tied to two essential NK functions; activation of LFA1, required for binding ICAM on NK target cell and NK polarization that results. We know overexpression of talin head activates LFA1 and talin1 promotes cell proliferation by affecting the expression of BCL2 family and p53 network. But, mdm2 the conserved nemesis of p53 is neutralized by Merlin, another cytoskeleton superfamily protein also required for polarization. p53 also regulates the highly conserved Cdc42 which effects adhesion, actin cytoskeletal dynamics and cell movement including for angiogenesis in developing tumor microenvironments.
We found that activation of p53 augmented NK cell-mediated cytolysis of tumor cells via induction of ULBP2 expression on tumor cell surface. Further, we identified p53 as a direct transcriptional regulator of ULBP2 via an intron1 binding site, thus revealing previously unknown molecular mechanism controlling NKG2D ligand transcription. In mouse NK cells, talin is required for outside signaling by LFA1, which together with signaling by NKG2D induces granule polarization.
The functions of p53 are inextricably linked to multiple mechanisms in NK and target cells including recognition, antigen-receptor-ligand binding, cytoskeletal rearrangement, immune synapse, granzyme and perforin release. p53's mutation frequency and variances bearing p53 destabilizing mutations are recognized more effectively by p53-specific T cells than stabilized p53 mutants. Therefore, NK could operate its probe as a binding cipher that determines whether its target can be killed. Variable binding, and ectopic expression, resulting from a p53 feedback loop could be dependent on a p53 variable-kill-checkpoint that triggers the cascade of coordinated activities between NK and its target, generally referenced in the preceding paragraphs.
NK's p53 status, a targets MHC molecules presenting p53 antigens, ULBP2-NKG2D binding and relevant pathways confer with observations that the period of NK engagement is sufficient to allow downstream DNA transcription and translation to confirm and enable the kill event. Co-culture methods that could educate NK to better synchronize with targets, based on p53 status may usher in new regimes for organic immunotherapy. The Codondex research teams at Precision Autology are progressing through pre-clinical research using their computed cell selections.