Tuesday, October 29, 2024

Pathogens And Immunity - Mutual Memories


The aryl hydrocarbon receptor (AhR) is a regulator of Natural Killer (NK) cell activity in vivo and is increasingly recognized for its role in the differentiation and activity of immune cell subsets. AhR ligands found in the diet, can modulate the antitumor effector functions. In vivo administration of toxin FICZ, an AhR ligand, enhances NK cell control of tumors in an NK cell and AhR-dependent manner. Similar effects on NK cell potency occur with AhR dietary ligands, potentially explaining the numerous associations that have been observed in the past between diet and NK cell function. 

Dioxins bind AhR and translocate to the nucleus where they influence DNA transcription. The dioxin response element (DRE) is a DNA binding site for AhR that occurs widely through the genome. Activation of p53 by DNA damaging agents differentially regulates AhR levels. More than 40 samples, biopsied from 4 tumors, resolved in Codondex repetitive sequences of TP53. The highest ranking short Key Sequences (p53KS) were identified using specificity for repeats and were heavily clustered at two intron locations. Each were found to include DRE, palindromes and p53 quarter or half binding sites. 

Many palindromes in the genome are known as fragile sites, prone to chromosome breakage which can lead to various genetic rearrangements or cell death. The ability of certain palindromes to initiate genetic recombination lies in their ability to form secondary structures in DNA which can cause replication stalling and double-strand breaks. Given their recombinogenic nature, it is not surprising that palindromes in the human genome are involved in genetic rearrangements in cancer cells as well as other known recurrent translocations and deletions associated with certain syndromes in humans.

In severe combined immune deficiency (scid) survival of lymphocyte precursors, harboring broken V(D)J coding ends, is prolonged by p53 deficiency which allows for the accumulation of aneuploid cells. This demonstrated that a p53-mediated DNA damage checkpoint contributes to the immune deficiency characteristic of the scid mutation and limits the oncogenic potential of DSBs generated during V(D)J recombination.

Repetitive DNA sequences, including palindromes can transpose locations under certain conditions. These are thought to have evolved from pathogenic remnants, deposited as DNA in genes, that can be transcribed and folded, often at nucleotide repeats, to form double stranded DNA or RNA. TP53 is the most mutated gene in cancer. Many of its binding sites have evolved through recombination events and are predominantly located among repeats. Therefore, binding sites and mutation frequency may mutually pressure repetitive sequences, DNA breaks and responses to potentially conserve immune memory, for lymphocyte and NK cell precursors, but to also provide a DNA record of pathogen candidates, 


No comments:

Post a Comment