Wednesday, September 30, 2020

p53 vasoregulation and NK cell depletion in SARS-CoV2

p53 has earned first prize in the academic stakes. It is also the most mutated gene in cancer and elephant's have 20 copies, which probably explains their surprisingly low rate of cancer. Its associations to innate immunity, particularly Natural Killer (NK) cells through the mechanics of vasoconstriction-dilation have become a point of interest in COVID19 patients.

Remarkably COVID19 has inspired the global scientific community to focus a significant portion of its aggregate research toward the impact of  SARS-CoV2 (CoV2). For the first time in history global research is singularly focused because a large number of other protein's and gene's are affected by CoV2 binding Ace2. The Ace2 receptor is important in systems of vasoconstriction-dilation and has wide ranging impact.

CoV2 binding Ace2 reduces its availability to convert Angiotensin1 to Angiotensin 1-7 (Ang1-7) or Angiotensin 1-9 (Ang1-9), which primarily interact via MAS and Angiotensin2 Receptor (AT2R) respectively. These have been linked to signaling and stretch caused by vasoconstriction-dilation, mitochondrial dysfunctionmitochondrial fission as well as cardiac and vascular remodeling.

Ang1-7 and Ang1-9 interactions with MAS or AT2R cell surface receptors have been linked to signaling events that drive p53 binding DNA and transcription. Myocyte stretching activates p53 and p53-dependent genes, leading to the formation of Angiotensin II (Ang II) and apoptosis. AngII, stimulates phosphorylation of p53 (on serine 15) and CREB (on serine 133) and signaling converges on the p53-CRE enhancer to stimulate Bradykinin receptor 2 (BK2) gene transcription. BK2 is a key element in the p53 related kallikrein-kinin system (KKS) of vasodilation that counters the Renin-Angiotensin-Aldosterone-System (RAAS) of vasoconstriction. 

Aldosterone was shown to induce mitochondrial dysfunction and podocyte injury mediated by p53/Drp1-dependent mitochondrial fission. In neuronal cells p53 dependent declines in Drp1 and parkin contribute to altered mitochondrial morphology and cell death. Parkin, via Pink1 activity binds depolarized mitochondria to induce autophagy of mitochondria. Mutations in both Drp1 and Pink1 were fatal in Drosophila models. These events also implicate a direct functional link to chronic inflammation in ageing between p53 and expression levels of ICAM1 on endothelial and NK cells required to bind targets. The p53 mediated negative regulation of autophagy is Pink1 dependent and experiments have shown that mitochondrial antigens, recognized by NK cells presented on MHC's are Pink1 and parkin dependent. 

Severe COVID-19 patients have highly elevated Bradykinin and AngII, perhaps an indication of elevated p53 trends that have been discovered in these patients. Under normal circumstances, on endothelial cells Bradykinin would act as a potent vasodilator via its BK2 receptor. However, since Ang (1-7) potentiates Bradykinin action on BK2 receptors its near absence may reduce KKS vasodilation. On the other hand RAAS, also via p53 and elevated AngII primarily interacts with AT1R to promote vasoconstriction.  

NK cells through their Renin Angiotensin System may counter-regulate target cells in response. However, in COVID19 patients depletion of NK cells, invasion of Neutrophils and endothelial cell damage, in part through elevated p53 autophagy and apoptosis is the overwhelming nasty work of CoV2 against the backdrop of dysregulated blood pressure in tissue.

 










 

Thursday, September 24, 2020

$100,000 Biohunt

Some of the past research on neoantigen and p53 antibodies in immunity has been encouraging. The data is enormously complex, but keeps pointing to TP53's great potential. To this end, we were anxious to start our mega-experiment, but were delayed by C19, now I'm glad to report we are well underway. In co-operation with researchers at UCLA we aim to determine whether Codondex transcript analysis, of TP53 can predict the best tumor tissue selection for most effective Natural Killer (NK) cell priming, activation and cell killing, including in autologous tumor micro environments.

We're hoping to to achieve a result along the path toward our ambitious clinical goal. We aim to prove that a specifically selected section from biopsied tissue can be used to effectively prime autologus NK cells for patient reapplication and disease treatment. 

This co-culture vs. sequencing challenge uses sections (T1-T8) taken from each of two tumors. Each section is co-cultured with 2 treated NK cell and one naive NK cell line and tests the efficacy of NK cell cytotoxicity against tumor cell and tumor tissue in killing assays. Separately, by sequencing TP53 of each selection and computing Codondex iScore(TM) algorithm we hope to identify specific features of each tissue selection that point computed results to research outcomes.


Co-culture vs. Sequencing Challenge

To better understand the analysis and encourage research contributions we are inviting applicants for first grants directed toward this objective. 

Codondex tools analyse genetic sequences at an arbitrary number of nucleotides. The tool provides an easy way to observe fine repetitive details of small subsequences contained within a gene. We compute various metrics for each subsequence including 'Inclusiveness', which measures the total occurrences of every computed smaller subsequence is found within the subsequence of interest. 

Our primary interest is intronic, non-coding DNA in multi-transcript genes. In these systems we create a transcript list, which we call the Vector, that is sorted by Codondex i-Score. This metric looks at Inclusiveness scaled by the length of the subsequence, to better account for intrinsic probability of finding smaller subsequences within progressively longer ones. Using this we look at the way order of this vector changes from subsequence to subsequence. Large changes in these vectors then prompts us to tag them for further investigation as it represents large deviation from transcript similarity, with this subsequence being labelled a Key Sequence. 

Codondex is proposing 3 grants for open problems to aid in our journey towards a more biologically useful platform. These 3 problems span statistical analysis, data acquisition and biological relevance of various aspects that are integral to our platform. 

Applicants should inquire further and sign up here.










Sunday, September 6, 2020

p53 in the SARS-CoV2 Storm

Coronavrius induced cytokine storm

A massive simulation and analysis using the supercomputer at Oakridge led scientists to more accurately identify the general idea that a Covid19 induced "cytokine storm" is responsible for disease progression. After detailed genetic analysis they specifically predicted that Bradykinin (BK) initiated the storm. If correct, this would help improve treatment directions for admitted patients. 

BK receptors are coded by BDKRB1 and BDKRB2 (BK2) gene's that operate in a kallikrein-kinin system (KKS), like the Renin Angiotensin System (RAS) as another potent regulator of blood pressure. BK is a part of the vasopressor system that induces hypotension and vasodilation, it is degraded by ACE and enhanced by angiotensin1-9, which is produced by ACE2 the receptor that SARS-COV2 binds. BK has been implicated as being active in the metabolic response to stress.

Similar to angiotensin peptides, BK is produced from an inactive pre-protein kininogen through activation by serine protease kallikrein (KKL). KLK1-KLK15 are mostly represented as a cluster of serine proteases on chromosome 19, with different tissue distributions. 

KLK's 1-15 further evidence a convergence on chromosome 19, associated closely with a large number of genes involved in blood pressure. KLK's are located at 19q13.41, an active transposon region with a 2x background deletion rate clustered near Zinc Fingers and KIR's (Killer cell like receptors). Chr19 is also associated with MHC precursors around which innate immunity and Natural Killer (NK) cell signaling developed. A link was confirmed in mice uterine NK cells that regulated local tissue blood pressure by at least Angiotensin Type 1 Receptor (AT1R) partly in response to mechanical stretch of vasoconstriction and vasodilation induced by uterine NK's internal RAS. 

A study of BK2 confirmed a conserved p53 binding site (rat, mouse and human) and p53-mediated activation of the BK2 promoter was augmented by transcriptional co-activators, CBP/p300. The results demonstrated BK2 promoter as a target of the p53-mediated activation and suggested a new physiological role for p53 in the regulation of G protein-coupled receptor (GPCR) gene expression. 

A follow up study, by the same group explained that Angiotensin II (AngII), the product of Angiotensin-Renin-Angiotensin1-Ace stimulates the phosphorylation of p53 (on serine 15) and CREB (on serine 133), and that AngII signaling converges on the p53-CRE enhancer to stimulate BK2 gene transcription.  

The convergence revealed that AT1R signaling activated CREB phosphorylation and in vivo assembly of p-CREB on the BK2 promoter in conjunction with histone hyperacetylation. It confirmed that AngII stimulates BK2 gene transcription in IMCD3 cells via AT1R. Thus, under conditions of augmented AngII and AT1R signaling, BK expression will be enhanced, thereby maintaining a balance of these two powerful counter-regulatory systems representing a novel form of cross-talk between GPCR's that link RAS and KKS, crucially here via p53.

This combined research indicates that activation of BK2 on endothelial cells, which is mediated by p53 dependent RAS-KKS cross-talk may also implicate AT1R on NK cells to secrete growth disrupting or growth promoting factors in response. SARS-CoV2 bound to ACE2 reduces its availability to convert angiotensin 1 to angiotensin 1-9, which normally enhances BK. The resulting imbalance and increase in circulating angII may directly implicate a NK cells' AT1R RAS response to a CoV2-ACE2 bound cell with disabled p53 promoter of GPCR expression. This cell with a crippled BK2 KKS, hypotension-vasodilation response offers no counter to the the AngII induced NK RAS vasoconstrictive function, affecting local tissue blood pressure thus failing to become a NK target.