Renewed interest in Bradykinin and its inactivation, by Angiotensin Converting Enzyme (ACE), during Covid infection reconfirmed RAS and KKS (Kallikrein-Kinin, Bradykinin) as the major systems of vasodilation and constriction contributing to blood pressure and disease. ACE2, a molecule of focus in Covid, reduces the Bradykinin product des-Arg9 bradykinin to inactive metabolites.
In uterine immune cells RAS proteins AT1, AT2, and ANP are expressed and ANP co-localizes to uterine Natural Killer (uNK) cells between pregnancy day 10 and 12, immediately before spiral arterial modification. In mice this suggested that uNK contributes to the physiological changes in blood pressure between days 5 and 12.
During the first trimester the uNK cells dramatically increase, from around 15% to 70% of immune cells in the Decidua of the Uterus. Expressed RAS-KKS proteins during this time may be solely responsible for amplified stimulation of the plasma contact system at least via p53-mediated transcription and activation of the BK2 promoter.
In myocytes stretch-mediated release of angiotensin II (AngII) induced apoptosis by activating p53 that enhanced local RAS and decreased the Bcl-2-to-Bax protein ratio in the cell. In endothelial cells mechanical stretch interconnected innate and adaptive immune response in hypertension. This suggests that mechanical forces, such as those experienced in hypertension, can influence the immune system and contribute to inflammation, vascular damage associated with high blood pressure and vascular remodeling.
It adds up that the massively disproportionate uNK activity in pregnancy and its impact on the mechanics of blood pressure could amplify sensitivities for p53 mediated stress response. It’s known that uNK cells contribute to the remodeling of spiral arteries and regulation of blood pressure, which are critical for fetal development. Similarly, on a cellular scale, abnormal cell growth and expansion of NK cells, may also amplify conditions that direct NK education and licensing to support growth, as in solid tumors and micro-vascular remodeling, or trigger inflammation, through cytokine expression and/or granulocyte killing of expanded missing-self cells.