Showing posts with label MDM2. Show all posts
Showing posts with label MDM2. Show all posts

Sunday, January 28, 2024

All Roads Lead to (Ch)Romosome 19!


A hepatocellular carcinoma (HCC) co-regulatory network exists between chromosome 19 microRNA cluster (C19MC) at 19q13.42, melanoma-A antigens, IFN-γ and p53, promoting an oncogenic role of C19MC that is disrupted by metal ions zinc and nickel. IFN-γ plays a co-operative role whereas IL-6 is antagonistic, each have a major bearing on the expression of HLA molecules on cancer cells. Analysis of Mesenchymal stem cells and cancer cells predicted C19MC modulation of apoptosis in induced pluripotency and tumorigenesis.

Key, differentially expressed genes in HCC included cancer-related transcription factors (TF) EGR1, FOS, and FOSB. From mRNA and miRNA expression profiles these were most enriched in the p53 signaling pathway where mRNA levels of each decreased in HCC tissues. In addition, mRNA levels of CCNB1, CCNB2, and CHEK1, key markers of the p53 signaling pathway, were all increased. miR-181a-5p regulated FOS and EGR1 to promote the invasion and progression of HCC by p53 signaling pathway and it plays an important role in maturation or impairment of natural killer (NK) cells.

pan-cancer analysis, on microRNA-associated gene activation, produced the top 57 miRNAs that positively correlated with at least 100 genes. miR-150, at 19q13.33 was the most active, it positively correlated with 1009 different genes each covering at least 10 cancers. It is an important hematopoietic, especially B, T, and NK, cell specific miRNA.

Rapid functional impairment of NK cells following tumor entry limits anti-tumor immunity. Gene regulatory network analysis revealed downregulation of TF regulons, over pseudo-time, as NK cells transition to their impaired end state. These included AP-1 complex TF's, Fos, Fosb (19q13.32), Jun, Junb (19p13.13), which are activated during NK cell cytolytic programs and down regulated by interactions with inhibitory ligands. Other down-regulated TF's included Irf8, Klf2 (19p13.11), Myc, which support NK cell activation and proliferation. There were no significantly upregulated TF's suggesting that the tumor-retained NK state arises from the reduced activity of core transcription factors associated with promoting mature NK cell development and expansion.

Innate immune, intra-tumoral, stimulatory dendritic cells (SDCs) and NK cells cluster together and are necessary for enhanced T cell tumor responses. In human melanoma, SDC abundance is associated with intra-tumoral expression of the cytokine producing gene FLT3LG (19q13.33) that is predominantly produced by NK cells in tumors. Computed tomography exposes patients to ionizing X-irradiation. Determined trends in the expression of 24 radiation-responsive genes linked to cancer, in vivo, found that TP53 and FLT3LG expression increased linearly with CT dose. 

Undifferentiated embryonal sarcoma of the liver displays high aneuploidy with recurrent alterations of 19q13.4 that are uniformly associated with aberrantly high levels of transcriptional activity of C19MC microRNA. Further, TP53 mutation or loss was present with all samples that also display C19MC changes. The 19q13.4 locus is gene-poor with highly repetitive sequences. Given the noncoding nature and lack of an obvious oncogene, disruption of the nearby C19MC regulatory region became a target for tumorigenesis. 

The endogenous retroviral, hot-spot deletion rate at 19p13.11-19p13.12 and 19q33-19q42 occurs at double the background deletion rate. Clustered in and around these regions are many gene families including KIR, Siglec, Leukocyte immunoglobulin-like receptors and cytokines that associate important NK gene features to proximal NK genes that were overrepresented in a meta analysis of blood pressure

Endogenous retroviruses that invite p53 and its transcriptional network, at retroviral hot-spots, suggest that lymphocyte progenitors, such as ILC's and expanded, NK cells are synergistically responsive to transcription from this busy region including by the top differentially expressed blood pressure genes MYADM, GZMB, CD97, NKG7, CLC, PPP1R13L , GRAMD1A as well as (RAS-KKS) Kallikrein related peptidases to educate early and expanded NK cells that shape immune responses.  

Monday, January 1, 2024

p53 - Mediator Of Natural Killer Education


The regulation of rapidly transforming stem cells into trophoblasts and expanding embryonic cell phenotypes, between gestation day 8 and 15 is fast and furious. Research unraveling the finer detail points to the advent of pressure impacting evolving conditions for growth, transformation of cells, microvasculature and resulting tissue types. Notably, Natural Killer (NK) cells expand to around 30% of the cells in the stroma of the uterine wall. These uterine NK (uNK) cell subsets coexist alongside conventional NK cells. This unusual uNK quantitative imbalance motivated our research.   

uNK are closely associated with spiral artery remodeling, for placentation at the blastocyst implantation site. They possess a functional Renin- Angiotensin system (RAS), the cornerstones of blood pressure. The ratio of uNK cells expressing Angiotensin II receptor type 1 (AT1) markedly changed between gestation day 6 and 10. At day 10-12 Atrial Natriuretic Peptide, for vasoconstriction and dilation, strongly co-localized to uNK cells at the implantation sites. Expression of these vasoregulatory molecules by uNK suggests they contribute to the changes in blood pressure that occur between days 5 and 12 coincidental with their population explosion in the decidua during normal pregnancy.

Similar to Angiotensin, Bradykinin (BK) is produced from an inactive pre-protein kininogen that is activated by serine protease kallikrein (KLK), mostly represented on chromosome 19, where they associate with a number of other genes involved in blood pressure. Oakridge scientists predicted that BK induced a Covid19 "cytokine storm" that is responsible for disease progression. 

KLK's are located at 19q13.41, an active transposon region with a 2x background deletion rate clustered near Zinc Fingers and KIR's (Killer immunoglobulin like receptors) that inhibit NK cells.  A link was confirmed in mice uterine NK cells that regulated local tissue blood pressure, by at least AT1, partly in response to mechanical stretch of vasoconstriction and dilation induced by uterine NK's internal RAS. 

In reproduction, at  Chromosome 19 MiRNA Cluster (C19MC), 59 known miRNAs are highly expressed in human placentas and in the serum of pregnant women. Numerous C19MC miRNA's are also found in peripheral blood NK's and at least miR-517a-3p (a C19MC from fetal placenta) was incorporated into maternal NK cells in the third trimester, and was rapidly cleared after delivery. miRNA's also regulate the migration of human trophoblasts and suppress epithelial to mesenchymal transition (EMT) genes that are critical for maintaining the epithelial cytotrophoblast stem cell phenotype

In hepatocellular carcinoma (HCC) a co-regulatory network exists between C19MC miRNAs, melanoma-A antigens (MAGEAs), IFN-γ and p53 that promotes an oncogenic role of C19MC and is disrupted by metal ions zinc and nickel. IFN-γ plays a co-operative role whereas IL-6 plays an antagonistic role. Its an important immunoregulartory network, because, in the very least, IFN-γ and IL6 have a major baring on the expression of HLA/MHC molecules on cancer cells. 

Immediately adjacent to C19MC, is the leukocyte immunoglobulin-like receptor complex, from where LILRB1 receptor, also known as Mir-7, is expressed on NK cells. It binds MHC class I molecules, on antigen-presenting cells and transduces a negative signal that inhibits stimulation of an immune response. LILRB1 has a polymorphic regulatory region that enhances transcription in NK Cells and recruits zinc finger protein YY1 that inhibits p53. It is required to educate expanded human NK cells and defines a unique antitumor NK cell subset with potent antibody-dependent cellular cytotoxicity.

In 2019 a study of arsenite-induced, human keratinocyte transformation demonstrated that knockdown of m6A methyltransferase (METTL3) significantly decreased m6A level, restored p53 activation and inhibited phenotypes in the-transformed cells. m6A downregulated expression of positive p53 regulator, PRDM2, through YTHDF2-promoted decay of mRNAs. m6A also upregulated expression of negative p53 regulator, YY1 and MDM2 through YTHDF1-stimulated translation of YY1 and MDM2 mRNA. Taken together, the study revealed the novel role of m6A in mediating human keratinocyte transformation by suppressing p53 activation and sheds light on the mechanisms of arsenic carcinogenesis via RNA epigenetics.

In 2021 a discovery that YTHDF2 is upregulated in NK cells upon activation by cytokines, tumors, and cytomegalovirus infection. YTHDF2 maintains NK cell homeostasis and terminal maturation. It promotes NK cell effector function and is required for IL-15-mediated NK cell survival and proliferation by forming a STAT5-YTHDF2 positive feedback loop. Analysis showed significant enrichment in cell cycle, division, including mitotic cytokinesis, chromosome segregation, spindle, nucleosome, midbody, and chromosome. This data supports roles of YTHDF2 in regulating NK proliferation, survival, and effector functions. 

As part of the 2021 discovery, transcriptome-wide screening identified TDP-43 to be involved in cell proliferation or survival as a YTHDF2-binding target in NK cells. TDP-43 induces p53-mediated cell death of cortical progenitors and immature neurons. Growth of the developing cerebral cortex is controlled by Mir-7 through the p53 Pathway

Here we have broadly described mechanisms by which NK cells maintain tissue homeostasis where tightly regulated p53 optimizes cellular conditions to 'self' educate the expanded NK cells. Those that express NKG2A and/or one or several KIRs, for which cognate ligands are present, become educated and as such transform to potent killers in response to their missing-self. Therefore, p53 isoforms have the innate capacity to promote a cellular homeostasis that makes it the mediator for optimal education of expanded NK cells.


Tuesday, October 19, 2021

Blood Pressure, Immunity and p53 Checkpoint.


Background

A few chromosome 19 curiosities developed into a deep-dive after looking into the primordial immune complex, the origins of MHC Class I and antigen receptors as revealed by comparative genomics. And the plot thickened because repressors (of endogenous retroviruses) that gained their binding affinity to retrovirus sequences at the same time their targets invaded the human lineage are preferentially located on chromosome 19. Further, the deletion rate in Zinc Finger clusters (ZNF) located around 19p.12 and 19q13.42, particularly between 51,012,739 and 55,620,741 are about twofold higher than the background deletion rate. A lot going on at this very active location which motivated this article.

At 19q13.42 kallikrein related peptidase (KLK’s), leukocyte immunoglobulin-like receptors (LILR’s) including killer-cell immunoglobulin-like receptor (KIR’s) as well MYADM, an important blood pressure related gene may also provide some clues to immunity variables that originate from or are influenced by this volatile region.

The retrotransposon bombardment of 19q13.42 and double background deletion rate is a significant remnant. However, after evolutionary MHC changed chromosomes ZNF, and within its range the chromosome 19 miRNA cluster (C19MC - 53,671,968 and 54,264,387) were still subjected to the deleterious effect of transposons. Regardless, suppression mechanics have kept epigenetic, regulatory and transcription processes, across gene’s far and wide on the move at a relatively stable rates. For example, reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues, but the effects of suppression may be sufficient to illicit a more permanent natural defense. In any event insertions and DNA damage are closely related and associated with loss of p53 that results in centrosome amplification. 

As cells pass through epithelial to mesenchymal transition (EMT), DNA damage prevents the normal reduction of p53 levels diverting the transcriptional program toward mesoderm without induction of an apoptotic response. In contrast, TP53-deficient cells differentiate to endoderm with high efficiency after DNA damage, suggesting that p53 enforces a “differentiation checkpoint” in early endoderm differentiation that alters cell fate in response to DNA damage.


Reproduction, Blood Pressure and NK

In reproduction, some of the 59 known miRNAs from primate-specific C19MC are highly expressed in human placentas and in the serum of pregnant women. They are also packaged into extracellular vesicles of diverse sizes, including exosomes and endow non-trophoblast cells with resistance to a variety of viruses. At least miR-517a-3p (a C19MC from fetal placenta) was incorporated into maternal NK cells in the third trimester, and it was rapidly cleared after delivery. miRNA's regulate the migration of human trophoblasts and suppress EMT genes critical for maintaining the epithelial cytotrophoblasts stem cell phenotype. 

Maternal uterine or decidual Natural Killer cells (dNK) express AT1, AT2, ANP, proteins of Renin Angiotensin System (RAS) suggesting dNK have the potential to contribute to changes in blood pressure that occur between days 5 and 12 of pregnancy in mice. And, pressure related mechanical stretch on endothelial cells interconnects innate and adaptive immune response in hypertension.

Pressure variables in cells and tissues may result from infection, inflammation and membrane stretch, including inner mitochondrial membrane that affects electron transport chain, endoplasmic reticulum, antigen production, presentation and exosome bound p53 / miRNA release.  ANP colocalization to dNK’s suggests that dNK RAS, at day 12 infers a localized RAS related responsiveness. STAT3 in monocytes was activated by increased endothelial stretch and is involved in driving almost all of the pathways that control NK cytolytic activity as well as the reciprocal regulatory interactions between NK cells and other components of the immune system. The crosstalk between STAT3 and p53/RAS signaling controls cancer cell metastasis and cisplatin resistance via the Slug/MAPK/PI3K/AKT-mediated regulation of EMT and autophagy.

Educating NK Subsets 

Looking into some of the ~15 genes scattered among C19MC (~sixty miRNA's) between 53,671,968 and 54,264,387;

1. MYADM was one of two blood pressure signature genes (copper uptake protein the other) differentially expressed for systolic, diastolic blood pressure and hypertension. Of the ~35 identified genes, several more strongly related to immune cell functions including PRF1, GNLY, TAGAP, IL2RB, GZMB and CD97, NKG7, CLC that are located on chromosome 19. The endothelium maintains a barrier between blood and tissue that becomes more permeable during inflammation. MYADM controls endothelial barrier function through ezrin, radixin, and moesin dependent regulation of ICAM-1 expression an essential receptor for NK interaction.

2. PRPF31 is recruited to introns following the attachment of U4 and U6 (spliceosome) RNA’s. Experiments using PRPF31 determined p53 activation is a general consequence of interfering with the spliceosome. 

3. At 54,617,158 LILRB1 receptor is expressed on immune cells where it binds to MHC class I molecules on antigen-presenting cells and transduces a negative signal that inhibits stimulation of an immune response. LILRB1 has a polymorphic regulatory region that enhances transcription in NK Cells and recruits zinc finger protein YY1 that inhibits p53. It also educates expanded human NK cells and defines a unique antitumor NK cell subset with potent antibody-dependent cellular cytotoxicity.

Monocyte/macrophage immunoglobulin-like receptors (MIR) genes are closely linked to the KIR gene family and the gene for FcαR at 19q13.4. The linkage was discovered in 1997 when a mouse sequence related to MIR mapped to a region on chromosome 7 syntenic with human 19q13.4. In 2012 a cluster of genetic loci, from multiple mouse strains and across anatomical sites was found to jointly contribute to the development of both thymic and splenic invariant natural killer T-cell NKT-cell levels. The dominant cluster was on mouse chromosome 7 and included almost all the non-C19MC genes located within the human C19MC region:– MYADM, CACNG7, VSTM1, TARM1, PRKCC(G), TFPT, NDUFA3, CNOT3, LENG1, TSEN34, RPS9

Four of nineteen knockout genes, that enhanced NK cell function were on chromosome 19 including GSK3 that phosphorylates Mdm2 to regulate p53 abundance, which would contribute to NK enhancement. 

A study of MHC disassortative mating in humans found Israeli’s were more gene similar, but MHC dissimilar than Europeans who were gene dissimilar and MHC dissimilar . Now, a recent study in American Indians found remarkably low KIR and HLA diversity in Amerindians that revealed signatures of strong purifying selection shaping the centromeric KIR region. This narrows to the importance of LILR-KIR region on chromosome19 that codes for the strongest NK cell educator receptors.

p53 regulates exosomes and miRNA’s directly influence NK responsiveness including regulation of dNK during pregnancy. Exosomes regulated by p53 also transfer it and can suppress growth and proliferation of p53 negative cells. Further, miRNA’s, induced by p53 can directly target ULBP2 mRNA and reduce its cell-surface expression.

Disease highlights
 
rs78378222 polymorphism in the 3'-untranslated region of TP53 contributes to development of age-associated cataracts by modifying miRNA-125b-induced apoptosis of lens epithelial cells. miRNA-125b is a novel negative regulator of p53. Deleting PRPF31 activates the p53 pathway and triggers retinal progenitor cells apoptosis. The members of the miR-125 family (miR-125a on chromosome 19q13.4 and miR-125b on chromosome 21q21.1) reside in two distinct human miRNA clusters with the let-7 and miR-99 families and these miRNAs are thus likely co-transcribed.
  
More succinctly, NK cells are alerted to induction of p53 in cancer cells by upregulation of the NKG2D ligands ULBP1 and ULBP2. p53 also induces expression of miR-34a and miR-34c, which target ULBP2 mRNA for destabilization. Observations suggest two possibly contrasting roles for p53 in NKG2DL expression and requires more investigation into how the regulation is fine-tuned. Extending this model to human populations would suggest that p53 must be inactivated among those with a robust NK response (those with B haplotypes). 

Taken together, our data suggest functional interactions between KIR and HLA modify risks of basal cell carcinoma (BCC) and squamous cell carcinoma, and that KIR encoded by the B genes provide selective pressure for altered p53 in BCC tumors. 

Conclusion

The convergence of several important cellular mechanisms that point back to a 19q13.42 address may illustrate ancient and conserved elements that perpetuate and function as integrated biological units effecting blood pressure, reproduction and immunity. Many of these impart education to innate immunity.







Monday, June 28, 2021

Immunity keeping p53 in check!



In a 2012 study on the topology of the human and mouse m6A RNA methylomes, Gene Ontology (GO) analysis of differentially expressed genes (DEG's) indicated a noteworthy enrichment of the p53 signaling pathway: 22/23 genes had differentially expressed splice variants, of which 18 were methylated. Moreover, 15 other members of the signaling pathway, which were not significant DEG's, exhibited significant differential isoform expressions. For example, isoforms of MDM4, needed for p53 inactivation were downregulated. Similar pro-apoptotic effects were observed in other pathway genes including MDM2, FAS and BAX. Higher apoptosis rate in HaCaT-T cells resulted with knockdown of m6A subunit METTL3, which also reversed a significant decrease in p53 activity. Modulation of p53 signaling through splicing may be relevant to induction of apoptosis by silencing of METTL3. 

Then, in 2019 a study of arsenite-induced human keratinocyte transformation demonstrated that knockdown of METTL3 significantly decreased m6A level, restored p53 activation and inhibited cellular transformation phenotypes in the-transformed cells. Further, m6A downregulated the expression of the positive p53 regulator, PRDM2, through the YTHDF2-promoted decay of PRDM2 mRNAs. m6A also upregulated expression of negative p53 regulator, YY1 and MDM2 through YTHDF1-stimulated translation of YY1 and MDM2 mRNA. Taken together, the study revealed the novel role of m6A in mediating human keratinocyte transformation by suppressing p53 activation and sheds light on the mechanisms of arsenic carcinogenesis via RNA epigenetics.

Finally in 2021 a discovery that YTHDF2 is upregulated in NK cells upon activation by cytokines, tumors, and cytomegalovirus infection. Ythdf2 deficiency in NK cells impaired its anti-tumor and anti-viral activity in vivo. YTHDF2 maintains NK cell homeostasis and terminal maturation, correlating with modulating NK cell trafficking and regulating Eomes, respectively. It promotes NK cell effector function and is required for IL-15-mediated NK cell survival and proliferation by forming a STAT5-YTHDF2 positive feedback loop. Analysis showed significant enrichment in cell cycle, division, and division-related processes, including mitotic cytokinesis, chromosome segregation, spindle, nucleosome, midbody, and chromosome. This data supports roles of YTHDF2 in regulating NK proliferation, survival, and effector functions. Transcriptome-wide screening identified Tardbp (TDP-43) to be involved in cell proliferation or survival as a YTHDF2-binding target in NK cells.

Downregulation of METTL3, which in spinal cord contributes with YTHDF2 to modulate inflammatory pain may upregulate differentially expressed p53 network splice variants that oppose YTHDF2 induced downregulation of p53, via PRDM2 leading to apoptotic or diseased cells. In diseased environments cytokines may upregulate YTHDF2 in NK cells leading to downregulation of p53 and cytoskeletal transformation that may be sufficient, at an immune synapse to advance cytolysis.

p53 signals may inform selections of cells and tissue that prime NK cells for advanced, personalized immune therapy. 

Tuesday, October 20, 2020

p53 in Transition, Covid19, Cancer and Immunity

p53's trajectory, sensitivity and function influences different outcomes in stages of transition of developing pluripotent or embryonic stem cells that can inform tumorigenesis and immune response. 

Cell cycle arrest and apoptosis are not dependent on p53 prior to p53-dependent embryonic stem cell differentiation, and DNA damage-induced apoptosis was p53-independent. 

Human (induced) pluripotent stem cell differentiation, from endoderm toward mesoderm was driven by a DNA damage-induced, time-sensitive, p53 transcriptional program. In cells passing through epithelial-to-mesenchymal transition DNA damage prevents the normal reduction of p53 levels, diverting the transcriptional program toward mesoderm without induction of an apoptotic response. 

From the blastocyst, villous cytotrophoblasts undergo a partial epithelial to mesenchymal transition (EMT) when they differentiate into extravillous cytotrophoblasts and gain the capacity to migrate and invade. Extravillous cytotrophoblast invasion involves a cellular transition from an epithelial to mesenchymal phenotype. TWIST, an emerging gene of interest strongly influences p53 to complete EMT.  

p53 is necessary for cells to initiate EMT, but attenuation of its levels by MDM2 is also necessary for expression of the mesenchymal phenotype. Downregulation of p53 may be directly controlled by this transition as the EMT factor TWIST1 can bind p53 leading to its MDM2-dependent degradation. During definitive endoderm differentiation, downregulation of p53 may be necessary for the normal transcriptional program to proceed. The unscheduled stabilization of p53, caused by DNA damage may result in a transcriptional perturbation driving differentiation away from definitive endoderm.

Using KRAS-driven pancreas tumor-derived cancer cells as a model of p53 loss, p53 deletion can promote immune tolerance through the recruitment of both myeloid and Treg cells. Enrichment of these suppressive cell populations enhanced the protection of p53-null cancer cells from immune-mediated elimination. 

Tumor-derived VEGF through VEGFR2 and NRP-1 creates a perivascular niche to regulate the initiation and stemness of skin tumors and autocrine VEGF promotes survival and invasion of prostatic, pancreatic cancer and glioblastoma cells, particularly for cancer stem-like cells in a NRP-1-dpendent enhanced EMT manner

A recent SARS-CoV2 update may point to anti-apoptotic affects that occur through the axis inactivation of p53 and mitochondrial apoptotic pathway as mediated by NRP-1, in endothelial cells of Zebra Fish. Decreased levels of p53 might suppress caspase cleavage and therefore downregulate apoptosis (a feature of Covid19). Data showed that p53 is the downstream signaling molecule of PI3K/Akt pointing at MDM2 as a signaling component in NRP-1 survival signaling. NRP-1 was shown as a host factor for SARS-CoV-2 infection and in a successful Covid19 phase trial, for critical care patients injection of apoptotic cells induced signaling to restore immune homeostasis.  

Even brief reactivation of endogenous p53, in p53-deficient tumors can produce complete tumor regressions. Primary response to p53 reactivation was not apoptosis, but the induction of a cellular senescence program associated with differentiation and upregulation of inflammatory cytokines. 

Elimination of senescent tumors, by Natural Killer (NK) cells occurred as a result of signal cooperation associated with p53 expression or senescence, which regulate NK cell recruitment and other signals that induce NKG2D ligand expression on tumor cells. p53 expression enhances CCL2-dependent NK cell recruitment to the tumors.

A feature of several NK cell activating receptors resides in their capacity to detect self molecules induced in conditions of cellular stress. This is the case for NKG2D, which interacts with various ligands, including CCL2 that are expressed at low levels in most tissues but are overexpressed upon initiation of cellular distress, for example, after initiation of the DNA damage response.

Codondex is working to identify p53 status in cells isolated from TME tissue samples that can be cocultured to educate NK cells to stimulate a desired immune response. 


Wednesday, March 25, 2020

Natural Killer to Kill or Transform?

Natural Killer cells emerge from distinct sources in embryonic development and each source of these earliest, innate immune cells confers different functions to the ascending cell lines. Fetal yolk sac, erythro-myeloid progenitor (EMP) derived NK cells, are uniquely biased for cytotoxic degranulation as opposed to inflammatory cytokine production, which are the dual hallmarks of all adult NK cells. But, parallel studies using human pluripotent stem cells (hPSCs) revealed that these progenitors can also give rise to NK cells that harbor a potent cytotoxic degranulation bias to kill.

In one of my previous articles, Natural Killer Shaping A Life I began to track processes supporting the unified origin of reproduction and immunity based on the theory of allorecognition.

Preceding implantation, the zygote divides to 16 cells that differentiate into an outer cell layer, trophoblast, and inner cell mass, embryoblast. The trophoblast becomes the fetal portion of the placenta, the embryoblast the embryo. Once differentiated into 30 cells a fluid-filled central blastocyst cavity forms. At about the 6th day of development, once it has reached nearly 100 cells the blastocyst mass begins its journey through the uterus to implant in the endometrium, which is where the embryo develops.

Yolk Sac
Implantation of the blastocyst is dependent, in part on a feto-maternal, immune handshake in which maternal NK cells of the Decidua (dNK), lining the Uterus are coerced by invading villus trophoblast cells to express cytokines that transform epithelial vascular cells in the placenta to release their binding enabling trophoblasts to replace them and  connect embryo to maternal blood supply  without rejection. This delicate phenomena is responsible for successful pregnancy. 

Following implantation, once cells of the inner embryoblast mass differentiate, only the cells of the yolk sac ultimately become the source of the NK cell of interest here. The other progenitor NK cell is sourced external to the yolk sac and that may also be basis of their functional differences.

The varied function of these dual sourced NK progenitors is transformation, as evidenced in trophoblast invasion, or killing damaged cells by cytolysis which the name "Natural Killer cell" describes. The dual source of the "killer" variety is thought to impart a WNT signaling influence over NK cell lineage. WNT-independent (WNTi-) and WNT-dependent (WNTd-) processes were found to distinguish the NK ontology. NK cells, biased toward degranulation and cell killing have been traced to the yolk sac, which remains isolated from rapidly differentiating external cells of the embryo until, over multiple weeks it gets fully absorbed.

dNK cells play an essential role in tissue and blood vessel transformation of the developing placenta. This has promoted an advanced body of thought that suggests certain tissue resident NK cells that possess some dNK characteristics may also be responsible for blood vessel transformation to accommodate new cancer or cancer stem cells that require new blood supply to develop into tumors. Therefore, cancer resident NK cells that, like dNK also express HLA-G or possess other trophoblast stem cell like characteristics may transform epithelial cells lining blood vessels in similar ways that connect fetal cells to the maternal blood supply without immune rejection.

To determine whether NK's varied ontology can shed any light on cancer cells coercing NK cells for tumor development and expansion, we identified the only three major gene expressions that are distinguished by their WNTi origin and which may inform about NK in adult mechanisms. Since our interest at Codondex is centered on p53 we correlated it with these genes:

1) NFIL3/E4bp4 transcription factor controls the commitment to NK lineage, directly regulates Eomes and ID2, which is responsible for P53 gain of function by suppressing ID2.

2) NCAM1/CD56 common NK gene is widely used to distinguish NK populations and strongly associated with p53 in multiple myeloma.

3) XBP1 a WNTi specific gene - regulates the p53/MDM2/P21 axis and is strongly present in yolk sac transcript analysis.  Unconventional splicing of XBP1 mRNA occurs in the unfolded protein response.

HLA-C is the only NK signaling molecule expressed by trophoblast cells that by a polymorphism can present variation for Adaptive immunity. Reduction of NK cytotoxicity was directly tied to the volume of Ets dependent expression from the site of the HLA-C polymorphism.  Further, Ets1, which is expressed in all NK ontologies, is necessary for a CBP/p53 transcription complex and transcription in UV-induced apoptosis in embryonic stem cells where the absence of p53 resulted in a high rate of embryonic malformations.

A possible scenario begins to emerge that near fully cytotoxic NK cells that bind HLA-KIR inhibiting and activating target cell receptors may be coerced to transcribe HLA-C, to express more inhibiting polymorphic or activating non-polymorphic transcripts, therefore greater or lesser Ets1 availability to coregulate XBP1 targets or CBP/p53 as the tipping point of degranulation and target cell killing.


Monday, November 25, 2019

Synapses By p53 And CD40L in Reproduction and Immunity

Cell membranes constitute a diverse range of lipid molecules each attached to a varying, odd or even length hydrocarbon chain (a tail) that, collectively pack together to form a membrane. Packing is a dynamic that generally occurs according to surrounding pressure, concentration, hydrophobic conditions and motion. The mix of molecules and their hydrocarbon chains in each membrane play a crucial role in determining functions of complex organisms in cells.

Two complex membrane bound organisms of eukaryotic cells are mitochondria - primary provider of ATP energy powering reactions of the cell and endoplasmic reticulum (ER) - protein folding organelle surrounding the nucleus. The mitochondria comprise a double membrane containing electron transport chains - sets of four membrane bound proteins which pump protons between inner and outer membranes to maintain optimal inner mitochondrial membrane pressure through which oxygen is metabolized into water by phosphorylation of ADP to ATP molecules, which are the basic energy unit of the cell.

ER is a convoluted extension of the nucleus membrane into which translated amino acids are transported and where they fold before being released and packaged in the golgi apparatus and cytoplasm. The process of translation, folding and transport requires significant energy as such mitochondria and ER are closely associated. Recently and for the first time C18 ceramide transportation between ER and outer mitochondrial membrane was described as a cellular stress response mechanism.

Another important membrane lipid C16-ceramide was found to tightly bind within the p53 DNA-binding domain. This interaction was highly selective toward the C16 ceramide acyl chain length with its C10 atom being proximal to Ser240 and Ser241. This binding stabilized p53 and disrupted its complex with E3 ligase MDM2 leading to the p53 accumulation, nuclear translocation and activation of downstream targets. The p53-MDM2 axis has been extensively covered in previous articles describing allorecognition, reproduction, immunity and auto-regulation. Ser241 was the only residue that interacted with all three p53 DNA sequences (p21, puma and a non-specific DNA system) persistently, indicating that Ser241 is a [response element] sequence-independent H-bond donor/acceptor for DNA.

It was also determined that Folate stress induces apoptosis via p53-dependent de novo Ceramide synthesis and up-regulation of Ceramide synthase 6 [C16], which is a transcriptional target of p53. In particular, Folate metabolism affects ovarian function, implantation, embryogenesis and the entire process of pregnancy. We observed that folate withdrawal leads to CerS6 up-regulation and C16-ceramide accumulation in a p53-dependent manner as a pro-apoptotic cue.

It has been demonstrated that clustering of the CD40 receptor depends on reciprocal clustering of the CD40 ligand, which is mediated by an association with p53, a translocation of acid sphingomyelinase (ASM) to the cell membrane, activation of the ASM (enzyme for ceramide), and a formation of ceramide. Ceramide appears to modify preexisting sphingolipid-rich membrane microdomains to fuse and form ceramide-enriched signaling platforms that serve to cluster CD40 ligand. Genetic deficiency of p53 or ASM or disruption of [C16] ceramide-enriched membrane domains prevents clustering of CD40 ligand. If the ligand is membrane-bound, the contact site between clustered ligands and receptors forms an immune synapse.

Finally, immune activation during the implantation phase causes preeclampsia-like symptoms via the CD40–CD40 ligand pathway in pregnant mice. The CD40 ligand (CD40L) is expressed by T cells and has a critical role in immune system regulation. Interventions targeting CD40L interactions following embryo implantation represent an approach to preventing preeclampsia (PE).

Here we have demonstrated a relationship between p53, C16 ceramide in reproduction and immunity via CD40 receptor-ligand in membrane bound concentrations of cells, particularly in respect of immunological synapse formation and blastocyst implantation. This further supports the notion that immunity and reproduction share common innate origins linked by p53.