Showing posts with label sequence. Show all posts
Showing posts with label sequence. Show all posts

Monday, March 4, 2024

p53 Direct Mechanisms In Immunity



Never in the field of molecular oncology have so many sites of posttranslational modification in one protein (p53) been modified by so many different enzymes, but direct response mechanisms that increase immune receptors are rarely discovered and have important implications.  

In the tumor microenvironment (TME), cancer associated fibroblasts (CAFs) display an activated phenotype and can physically remodel the extracellular matrix (ECM). Silencing p53 in the CAFs strongly compromised this activity, implicating p53 as a key contributor to a distinctive CAF feature. Here, the non-autonomous, tumor-suppressive activity of non-mutant p53 cDNA is rewired to become a significant contributor to the CAFs’ tumor-supportive activities. This surprising role for p53 in CAFs suggests that, during tumor progression p53 functionality is altered, not only in the cancer cells, but also in their adjacent stroma.

Although p53 is not mutated in the human placenta, it has become functionally incompetent. Why and how p53 is functionally incompetent in cytotrophoblast cells might well be the key to understanding trophoblast invasion. Vascular remodeling for placentation is controlled by small populations of conventional Natural Killer cells, distinct from much larger populations of uterine NK cells, that acidify the ECM with a2V-ATPase, that activates MMP9, degrades the ECM and releases stored pro-angiogenesis growth factors. Similarly hypoxic TME's that in NK cells sustain excessive mitochondrial fission resulting in fragmentation could cause a2V-ATP activated MMP9 to similarly degrade ECM and promote angiogenesis in the early TME.  

Another MMP protein, MMP2 is a ligand for the Toll-like receptor 2 (Tlr2). Expression of Tlr2 and Tlr4 in the TME is important for the promotion of tumor growth, and when both of these receptors are absent, growth is compromised. Furthermore, the expression of Tlr2 and Tlr4 in both hematopoietic and stromal compartments appears to support MMP2-driven tumor growth.

The integration of the TLR gene family into the p53 regulatory network is unique to primates. p53 promoter response elements that are targeted by this DNA damage and stress-responsive regulator suggest a general p53 role in the control of human TLR gene expression. TLR genes show responses to DNA damage, and most are p53-mediated. TLR's mediate innate immunity to a wide variety of threats through recognition of conserved pathogen-associated molecular motifs. Expression of all TLR genes, in blood lymphocytes and alveolar macrophages from healthy volunteers can be induced by DNA metabolic stressors with considerable inter-individual variability. Most TLR genes respond to p53 via canonical as well as noncanonical promoter binding sites.

A polymorphism in a TLR8 response element provided the first human example of a p53 target sequence specifically responsible for endogenous gene induction. These findings—demonstrating that the human innate immune system, including downstream induction of cytokines, can be modulated by DNA metabolic stress—have many implications for health and disease, as well as for understanding the evolution of DNA damage and p53 responsive networks. That p53 can directly increase an inflammatory response differs from the generally held view relating to the antagonistic affect of p53 on inflammation directed by NF-κB. However, the direct mechanism here is different in that it involves another p53-mediated increase in a receptor that translates ligand interactions into cytokine responses.




Tuesday, March 21, 2023

Tolerating Your Non-self!

Immune cells get comfortable with cancer
Courtesy https://deepai.org

A hallmark of cancer, autoimmunity and disease is the aberrant transcription of typically silenced, repetitive genetic elements that mimic Pathogen-Associated Molecular Patterns (PAMP's) that bind Pattern Recognition Receptors (PPR's) triggering the innate immune system and inflammation. Unrestrained, this 'viral mimicry' activates a generally conserved mechanism that, under restraint, supports homeostasis. These repetitive viral DNA sequences normally act as a quality control over genomic dysregulation responding in ways that preferentially promote immune conditions for stability. If aberrantly unrestrained and the 'viral mimicry' is transcribed it may result in undesirable immune reactions that disrupt the homeostasis of cells.

Mitochondrial DNA (mtDNA) are one source of cytosolic double stranded RNA (dsRNA) that is commonly present in cells. Trp53 Mutant Embryonic Fibroblasts (MEF's) contain innate immune stimulating endogenous dsRNA, from mtDNA that mimic PAMP's. The immune response, via RIG-1 like PRR, leads to expression of type 1 interferon (IFN) and proinflammatory cytokine genes. Further, Natural Killer cells also produce a multitude of cytokines that can promote or dampen an immune response. Wild-type p53 suppresses viral repeats and contributes to innate immunity by enhancing IFN-dependent antiviral activity independent of its function as a proapoptotic and tumor suppressor gene. 

Post-translationally modified P53, located in the cytoplasm, enhances the permeability of the mitochondrial outer membrane thus stimulating apoptosis. However, treating Trp53 mutant MEF's with DNA demethylating agent caused a huge increase in the level of transcripts encoding short interspersed nuclear elements and other species of noncoding RNAs that generated a strong type 1 IFN response. This did not occur in p53 wild-type MEF's. Thus it appears that another function of p53 is to silence repeats that can accidentally induce an immune response.

This has several implications for how we understand self versus non-self discrimination. When pathogen-associated features were quantified, specific repeats in the genome not only display PAMP's capable of stimulating PRRs but, in some instances, have seemingly maintained such features under selection. For organisms with a high degree of epigenetic regulation and chromosomal organization immuno-stimulatory repeats release a danger signal, such as repeats released after p53 mutations. Here, immune stimulation may act as back-up for the failure of other p53 functions such as apoptosis or senescence due to mutation. This supports the hypothesis that specific repeats gained favor by maintaining non-self PAMPs to act as sensors for loss of heterochromatin as an epigenetic checkpoint of quality control that avoids genome instability generally. 

When P53 mutates it begins to fail its restraint of viral suppression, this enables a 'viral mimicry' and aberrant immune reactions. These may promote survival of cells that can leverage immunity, promote angiogenesis and heightened proliferation of cancers, or other diseases under modified conditions for non-self tolerance. 



Thursday, October 20, 2022

Toward Customized Natural Killer Cells



An important role of Natural Killer (NK) cells is to eliminate other cells that extinguish or diminish expression of self-MHC class I molecules or Human Leukocyte Antigen (HLA), which commonly occurs as a result of viral infection or cellular transformation. This capacity arises because NK cells express stimulatory and inhibitory receptors that engage ligands on normal cells. The majority of inhibitory receptors belong to the Killer-cell immunoglobulin-like receptors (KIR) and CD94/NKG2A  families and are specific for MHC I molecules. When an NK cell encounters a normal cell, engagement of the inhibitory receptors conveys signals that counteract stimulatory signaling. Lysis occurs when inhibition is lost because the target cell lacks one or more self-MHC molecules or when target cells express high levels of stimulatory ligands that counter inhibition.

Mitochondrial DNA (MtDNA) embedded in the genomes of 66,000 humans was associated with adverse consequences including cancer. Overall tumor specific nuclear embedded MtDNA was more common on Chromosome (Chr)19, less common on Chr6 and tended to involve non-coding, repetitive elements or satellite repeats. 

The dimorphic relationship between genes on Chr6, encoding HLA and  Chr19, encoding KIRs  may elucidate how, why and when NK cells determine self restraint or attack cells infected by pathogens and disease. Chr19 has also been linked to blood pressure mechanics, immunity and checkpoints associated with P53. Cancer mutation burden is shaped by G4 DNA, cell cycle replication stress, DNA repair pathway and mitochondrial dysfunction. G4 DNA overrepresentation generally occurs in tumors with mutations in tumor suppressor gene's such as TP53. 

Whether KIR-HLA relationships are associated with p53 status of NK cells and of its target is unknown. However, it has been reported that cellular metabolism regulates a cells sensitivity to NK cells depending on its P53 status and that P53 pathway is coupled to NK cell maturation leaving open the possibility that a relationship exists

KIR and HLA genes are polymorphic and display significant variations, The independent segregation of these unlinked gene families produces extraordinary diversity in the number and type of KIR-HLA pairs inherited in individuals. Variation affects the KIR repertoire of NK cell clones, NK cell maturation, the capability to deliver signals, and consequently the NK cell response to human diseases.

One study suggests that functional interactions between KIR and HLA modify risks of basal cell carcinoma (BCC) and squamous cell carcinomas (SCC) and that KIR B haplotypes provide selective pressure for altered P53 in BCC tumors.

MtDNA and other insertions into nuclear DNA may have altered Chr19-Chr6 linkage relationships and KIR-HLA validity, affecting the integrity of NK missing-self surveillance. Therefore, P53 dependent metabolism and P53 coupled NK cell education may point to a required synchronicity, obtained through NK education, licensing KIR-HLA and other receptor-ligand combinations for a global NK symbiosis.

The altered landscape of cancer is often characterized by a heterogeneous mix of immunosuppressive metabolites, glucose and amino acid deprivation, hypoxia and acidity, which, in concert, prevent effective anti-tumor immunity, here NK therapies herald great potential.

NK cell co-culture with patient cells selected using precise P53 rankings for a distinct P53-coupled-NK cell education may realize a mature NK subset with P53-paired characteristics. Trojan therapy using autologous or combined allogeneic NK cells may promote licensing, through a broad synchronization including at least KIR-HLA. This ex-vivo approach may resist re-education in vivo and activate against P53-decoupled-KIR-HLA affected cells. The objective is an NK subset that, in vivo will initiate and progress a limited innate immune response and disrupt near-neighbor targets that will contribute to a broader immune response.  




Thursday, February 3, 2022

Expanding Treatment Horizons


An unrecognized link between p53 function and the immunosurveillance of cancer and infection led to an understanding how p53 influences the expression of MHC molecules at the cell surface via binding interaction with endoplasmic reticulum ERAP1.

Targeted mutations in multiple cancers revealed TP53 gene expression ranged between the 89th and 100th percentile of all expressed transcripts, and raised the possibility that p53 peptides arising from these common mutations might be immunogenic in these patients.

Select KIR-HLA composition favoring antitumor activity could be a promising immunotherapeutic strategy against breast cancer using autologous activated Natural Killer (NK) cell clones. Coexistence of inhibitory and activating killer-cell immunoglobulin-like receptors (KIR) to the same cognate HLA-C2 and HLA-Bw4 ligands conferred breast cancer risk. Inhibitory KIR(iKIR)-HLA pairs without their activating KIR (aKIR)-HLA counterparts were significantly higher in normal controls. Contrarily and adding complexity this suggests NK cells expressing iKIR, to cognate HLA-ligands in the absence of specific aKIR counterparts are instrumental in antitumor response

Identification and characterization of the peptides presented by HLA-C, G and E molecules has been lacking behind the more abundant HLA-A and HLA-B gene products. The peptide specificities of these HLA molecules were elucidated using a comprehensive analysis of naturally presented peptides. The 15 most frequently expressed HLA-C alleles as well as HLA-E*01:01 and HLA-G*01:01 were transfected into lymphoblastoid C1R B-cells expressing low endogenous HLA. 

The results (above) include allotype C*02:02 for p53 presentation and indicate the overlap of HLA source protein and top 500 peptides demonstrating the enormous complexity for multivariate analysis of immune response. However,  C*02:02 and C*05:01 have identical contact residues for p8 and p9, the residues of the bound peptide that influences HLA-C interaction with KIR. This suggests peptide effects could contribute to the broader and stronger binding reactions of these two HLA-C allotypes. Interestingly SART3 and MAGEA3 proteins both interact through the p53 pathway and are reported in the peptide study (above) in addition to TP53 to present ligands on C*02:02 and C*05:01. 

Moreover, in vitro  models demonstrated that p53 is required for upregulation of NK ligands. Further, there was a strong association between the KIR B haplotype and p53 alteration in Basal Cell Carcinoma (BCC), with a higher likelihood that KIR B carriers harbor abnormal p53 (p<0.004). Together the data suggests functional interactions between KIR and HLA modify risks of BCC and Squamous Cell Carcinoma and that KIR encoded by the B genes provide selective pressure for altered p53 in BCC tumors.

Notwithstanding the enormous complexity between iKIR, aKIR - HLA interactions, immunoterapy must address the highly specific characteristics of autologous precision and discover methods to sensitively educate NK cells so that minimally invasive treatments can be extended to patients who fall outside the patient cohort for strictly regulated treatments. 

Of course, its never that simple...



Monday, June 28, 2021

Immunity keeping p53 in check!



In a 2012 study on the topology of the human and mouse m6A RNA methylomes, Gene Ontology (GO) analysis of differentially expressed genes (DEG's) indicated a noteworthy enrichment of the p53 signaling pathway: 22/23 genes had differentially expressed splice variants, of which 18 were methylated. Moreover, 15 other members of the signaling pathway, which were not significant DEG's, exhibited significant differential isoform expressions. For example, isoforms of MDM4, needed for p53 inactivation were downregulated. Similar pro-apoptotic effects were observed in other pathway genes including MDM2, FAS and BAX. Higher apoptosis rate in HaCaT-T cells resulted with knockdown of m6A subunit METTL3, which also reversed a significant decrease in p53 activity. Modulation of p53 signaling through splicing may be relevant to induction of apoptosis by silencing of METTL3. 

Then, in 2019 a study of arsenite-induced human keratinocyte transformation demonstrated that knockdown of METTL3 significantly decreased m6A level, restored p53 activation and inhibited cellular transformation phenotypes in the-transformed cells. Further, m6A downregulated the expression of the positive p53 regulator, PRDM2, through the YTHDF2-promoted decay of PRDM2 mRNAs. m6A also upregulated expression of negative p53 regulator, YY1 and MDM2 through YTHDF1-stimulated translation of YY1 and MDM2 mRNA. Taken together, the study revealed the novel role of m6A in mediating human keratinocyte transformation by suppressing p53 activation and sheds light on the mechanisms of arsenic carcinogenesis via RNA epigenetics.

Finally in 2021 a discovery that YTHDF2 is upregulated in NK cells upon activation by cytokines, tumors, and cytomegalovirus infection. Ythdf2 deficiency in NK cells impaired its anti-tumor and anti-viral activity in vivo. YTHDF2 maintains NK cell homeostasis and terminal maturation, correlating with modulating NK cell trafficking and regulating Eomes, respectively. It promotes NK cell effector function and is required for IL-15-mediated NK cell survival and proliferation by forming a STAT5-YTHDF2 positive feedback loop. Analysis showed significant enrichment in cell cycle, division, and division-related processes, including mitotic cytokinesis, chromosome segregation, spindle, nucleosome, midbody, and chromosome. This data supports roles of YTHDF2 in regulating NK proliferation, survival, and effector functions. Transcriptome-wide screening identified Tardbp (TDP-43) to be involved in cell proliferation or survival as a YTHDF2-binding target in NK cells.

Downregulation of METTL3, which in spinal cord contributes with YTHDF2 to modulate inflammatory pain may upregulate differentially expressed p53 network splice variants that oppose YTHDF2 induced downregulation of p53, via PRDM2 leading to apoptotic or diseased cells. In diseased environments cytokines may upregulate YTHDF2 in NK cells leading to downregulation of p53 and cytoskeletal transformation that may be sufficient, at an immune synapse to advance cytolysis.

p53 signals may inform selections of cells and tissue that prime NK cells for advanced, personalized immune therapy. 

Sunday, June 20, 2021

First Intron DNA - Site for a Genetic Brain?

DNA Methylation

The first intron of a gene, regardless of tissue or species is conserved as a site of downstream methylation with an inverse relationship to transcription and gene expression. Therefore, it is an informative gene feature regarding the relationship between DNA methylation and gene expression. But, expression in induced pluripotent stem cells (iPSC's) has been a major challenge to the stem cell industry, because by comparison these cells have not yet reached the state of natural pluripotent or embryonic stem cells (ESC's).

In mice two X chromosomes (XC) are active in the epiblasts of blastocysts as well as in pluripotent stem cells. One XC is inactivated triggered by Xist (non coding) RNA transcripts coating it to become silent. Designer transcription factor (dTF) repressors, binding the Xist intron 1 enhancer region caused higher H3K9me3 methylation and led to XC's opening and X-linked gene repression in MEFs. This substantially improved iPSC production and somatic cell nuclear transfer (SCNT) preimplantation embryonic development. This also correlated with much fewer abnormally expressed genes frequently associated with SCNT, even though it did not affect Xist expression. In stark contrast, the dTF activator targeting the same enhancer region drastically decreased both iPSC generation and SCNT efficiencies and induced ESC differentiation. 

A genome-wide, tissue-independent quasi-linear, inverse relationship exists between DNA methylation of the first intron and gene expression. More tissue-specific, differentially methylated regions exist in the first intron than in any other gene feature. These have positive or negative correlation with gene expression, indicative of distinct mechanisms of tissue-specific regulation. CpGs in transcription factor binding motifs are enriched in the first intron and methylation tends to increase with distance from the first exon–first intron boundary, with a concomitant decrease in gene expression.

Since the relationship between sequence, methylation, repression and transcription is determinative in ESC differentiation it may also suggest a broader link to differential translation. Translation is required for miRNA-dependent transcript destabilization that alters levels of coding and noncoding transcripts. But, steady-state abundance and decay rates of cytosolic long non-coding RNA's (lncRNAs) are insensitive to miRNA loss. Instead lncRNAs fused to protein-coding reporter sequences become susceptible to miRNA-mediated decay. 

In this model, first intron DNA sequences that are differentially methylated, bind transcription factors that effect transcription, impact splicing, expressions of coding or non-coding transcripts and transcript destabilizations resulting in differential rates and possible variations in translation. This bottom-up, dynamic view of the classical process may elevate the first intron from 'junk' to a DNA 'brain' because it plays a more extensive role, heading the process toward translation of any gene or switching it off entirely.  

For this reason, among others Codondex uses first intron k-mers relative to the transcripts mRNA as the basis for comparing same gene transcripts in diseased cells or tissue samples. Further, p53 and BRCA1 miRNA key sequences, discovered using Codondex iScore algorithm, when transfected into HeLa cells resulted in significantly reduced proliferation that may result from this accelerated, transfected miRNA dependent decay.

 

Thursday, May 13, 2021

Non-Coding DNA Key Sequences

DNA Structural Inherency

Wind two strands of elastic, eventually it will knot, ultimately it will double up on itself. Separate the strands. From the point of unwinding, forces will be directed to different regions and the separation will approximately return to the wound state of the band. Do the same with each of 10 different bands or strings of any type, they will all behave in much the same way. For a given section of DNA being transcribed, the effect of separation will be much the same. For a given gene, there will be sequences that can tolerate force to greater or lesser degrees. For different transcripts, of a gene variation at those sequences may be crucial to the integrity of transcription machinery that separates DNA strands to initiate replication to RNA and for the outcome.

Cellular biology is enormously complex in all regards. The physics of molecular interaction, fluid dynamics, and chemistry combine in a system where cause and effect is near impossible to predict. At the most elementary level we hypothesize some non-coding DNA (ncDNA) possess structural inherencies that can be deployed to direct gene proteins and cell function for diagnosis or therapy.

Coding DNA and its regulatory, non-coding gene compliment is transcribed and spliced from a transcribed gene. Transcription to RNA, edited mRNA, spliced non-coding RNA and ultimately mRNA translation to protein can produce wide ranging, variable outcomes that may not be re-captured experimentally. 

A single nucleotide polymorphism (SNP) or SNP combinations within a gene may affect the finely tuned balance that results. Under different environmental conditions this could be material to the protein produced. Additionally other mutations of the gene could add complexity to the environment and/or the  resulting protein translation. 

At this level of cellular biology, genetic DNA stores instruction for protein assemblies to produce new protein required for the fully functional cell. However, DNA's stored mutations can lead to different functional or non-functional versions of protein depending on many different factors. Relationships between ncDNA, including mutations and the transcripts' edited, protein coding mRNA may represent unexplored inherencies that can regulate the gene's mRNA or translated protein.

We built an algorithm to elaborately compare ncDNA sequences of multiple protein coding transcripts of the same gene. For each transcript it steps through every variable length ncDNA sequence (kmer) (specifically intron1), computes a signature for each and indexes it to the constant of the transcripts' mRNA signature. For each step these signatures order the kmers for each of the transcript's. The order is represented in a vector of all the transcripts being compared.  

At millions of successive steps (depending on total intron 1 length's) transcripts mostly retain their vector ordering except, as expected at a kmer length change. Mostly transcript order in the vector does not change, occasionally a few positions change, vary rarely do all positions change. Position changes that cause another, like a domino effect are filtered out. For the rarest positions changes at a step, we look to the root causes in the kmer (sequence). We call this a Key Sequence because it is identified by the significance of changes to transcript positions in the vector compared to the vector at the next step. 

Therefore, Key Sequences cause the most position changes between transcripts being compared by the algorithm. This relative measure is step dependent and Key Sequences are discovered by comparing transcript positions in the vector at the next step location. Logically, this infers a genes structural inherency discovered through ncDNA Key Sequence relationships to mRNA, to other transcripts, error in gene alignments, sequenced reads or the algorithm. 

In assay testing we were able to predict and synthesize non-coding RNA Key Sequences that significantly reduced proliferation of HeLa cells. In our pre-clinical work, based on comparisons to transcripts of the TP53 we will be predicting the efficacy of cell and tissue selections that educate and activate Natural Killer cells.

If Key Sequences are inherent they could open a new frontier for diagnosis and therapy.