Thursday, May 13, 2021

Non-Coding DNA Key Sequences

DNA Structural Inherency

Wind two strands of elastic, eventually it will knot, ultimately it will double up on itself. Separate the strands. From the point of unwinding, forces will be directed to different regions and the separation will approximately return to the wound state of the band. Do the same with each of 10 different bands or strings of any type, they will all behave in much the same way. For a given section of DNA being transcribed, the effect of separation will be much the same. For a given gene, there will be sequences that can tolerate force to greater or lesser degrees. For different transcripts, of a gene variation at those sequences may be crucial to the integrity of transcription machinery that separates DNA strands to initiate replication to RNA and for the outcome.

Cellular biology is enormously complex in all regards. The physics of molecular interaction, fluid dynamics, and chemistry combine in a system where cause and effect is near impossible to predict. At the most elementary level we hypothesize some non-coding DNA (ncDNA) possess structural inherencies that can be deployed to direct gene proteins and cell function for diagnosis or therapy.

Coding DNA and its regulatory, non-coding gene compliment is transcribed and spliced from a transcribed gene. Transcription to RNA, edited mRNA, spliced non-coding RNA and ultimately mRNA translation to protein can produce wide ranging, variable outcomes that may not be re-captured experimentally. 

A single nucleotide polymorphism (SNP) or SNP combinations within a gene may affect the finely tuned balance that results. Under different environmental conditions this could be material to the protein produced. Additionally other mutations of the gene could add complexity to the environment and/or the  resulting protein translation. 

At this level of cellular biology, genetic DNA stores instruction for protein assemblies to produce new protein required for the fully functional cell. However, DNA's stored mutations can lead to different functional or non-functional versions of protein depending on many different factors. Relationships between ncDNA, including mutations and the transcripts' edited, protein coding mRNA may represent unexplored inherencies that can regulate the gene's mRNA or translated protein.

We built an algorithm to elaborately compare ncDNA sequences of multiple protein coding transcripts of the same gene. For each transcript it steps through every variable length ncDNA sequence (kmer) (specifically intron1), computes a signature for each and indexes it to the constant of the transcripts' mRNA signature. For each step these signatures order the kmers for each of the transcript's. The order is represented in a vector of all the transcripts being compared.  

At millions of successive steps (depending on total intron 1 length's) transcripts mostly retain their vector ordering except, as expected at a kmer length change. Mostly transcript order in the vector does not change, occasionally a few positions change, vary rarely do all positions change. Position changes that cause another, like a domino effect are filtered out. For the rarest positions changes at a step, we look to the root causes in the kmer (sequence). We call this a Key Sequence because it is identified by the significance of changes to transcript positions in the vector compared to the vector at the next step. 

Therefore, Key Sequences cause the most position changes between transcripts being compared by the algorithm. This relative measure is step dependent and Key Sequences are discovered by comparing transcript positions in the vector at the next step location. Logically, this infers a genes structural inherency discovered through ncDNA Key Sequence relationships to mRNA, to other transcripts, error in gene alignments, sequenced reads or the algorithm. 

In assay testing we were able to predict and synthesize non-coding RNA Key Sequences that significantly reduced proliferation of HeLa cells. In our pre-clinical work, based on comparisons to transcripts of the TP53 we will be predicting the efficacy of cell and tissue selections that educate and activate Natural Killer cells.

If Key Sequences are inherent they could open a new frontier for diagnosis and therapy.








Thursday, April 22, 2021

IFN-γ Concentration, p53 and Immune Sensitivity

IFN-γ 

Dimorphic complexity between Human Leukocyte Antigen (HLA) and Killer Immune Receptor (KIR) haplotypes
introduce significant challenges for personalized Natural Killer (NK) and immune cell therapy. In vitro models support a p53 requirement for upregulation of NK ligands and there is a strong association between the KIR B haplotype and p53 alteration in Basal Cell Carcinoma's (BCC) with a higher likelihood that KIR B carriers harbor abnormal p53. Data suggests that KIR encoded by B genes provides selective pressure for altered p53 in, at least BCC's. 

Breast cancer (BC) patients exhibit reduced NK-cytotoxicity in peripheral blood. To test whether certain KIR-HLA combinations impair NK-cytotoxicity that predispose to BC risk, KIR and HLA polymorphisms were analyzed in 162 women with BC and 278 controls. KIR-B genotypes increased significantly in BC. Certain activating KIR (aKIR) HLA ligand combinations were significantly increased in advanced-BC patients whose combinations also shared specific inhibitory KIR (iKIR) counterparts. Contrarily, iKIR-HLA pairs without their aKIR-HLA counterparts were significantly higher in controls. The data suggests NK cells expressing iKIR to cognate HLA-ligands in the absence of specific aKIR counterpart are instrumental in antitumor response. 

The TP53 family consists of three sets of transcription factor genes, TP53, TP63 and TP73, each expresses multiple RNA variants and protein isoforms. TP53 is mutated in 25-30% of BC's, but the effect of isoforms in BC is unknown. Predicted changes in expression of a subset of RNAs involved in IFN-γ signaling were confirmed in vitro. Data showed that different members of the TP53 family can drive transcription of genes involved in IFN-γ signaling in different BC subgroups. Moreover, tumors with low IFN-γ signaling were associated with significantly poorer patient outcome.

NK receptor NKG2D interacts with several virus or stress inducible ligands, including ULBP1 (NKG2DL1) and -2 expressed on target cells. Induction of wild-type p53, but not mutant p53, strongly upregulated mRNA and surface expression of ULBP1 and -2, but not other ligands. An intronic p53-responsive element was discovered in these genes. Coculture of wild-type, p53-induced human tumor cells with primary human NK cells enhanced NKG2D dependent degranulation and IFN-γ production by NK cells.  

In the Tumor Micro Environment (TME) IFN-γ is produced at various concentrations in response to numerous immune stimulants and highlights the need for more personalized, disease centric approach. Engagement of IFN-γ Receptor on distinct tumor stromal cells, induction of interferon stimulated genes, immune status of the TME, and IFN-γ concentration are recognized as critical determinants for IFN-γ-mediated outcomes. Notably, an appropriate antitumor concentration of IFN-γ has yet to be determined. Interestingly IFN-γ produced by NK cells is said to be an essential mediator of Angiotensin II inflammation and vascular dysfunction.

Pharmacological activation of p53 exerts a potent antileukemia effect on antitumor immunity, including NK cell-mediated cytotoxicity against acute myeloid leukemia (AML). Interestingly, orally administered DS-5272 (a potent inhibitor of MDM2 - promotor of p53 degradation) induced upregulation of CD107a and IFN-γ in NK cells but not in CD8+ T cells. Furthermore, coculture of NK cells with leukemia cells resulted in massive apoptosis. 

Findings strongly suggest an interaction between B7 (NK receptor) molecules contribute to a particular design of the inflammatory microenvironment including B7-H6 and PD-L1, for which therapy was enhanced by expanded NK autologous or donor cells. RNA transfections, into HeLa cells of p53 or BRCA1 intron1 Key Sequences (based on Codondex iScore's most significant mRNA-intron1 variations) caused several genes to be upregulated, +1500% above control including B7-H6 (NCR3LG1) ligand for NCR3 (Nkp30) NK cell receptor which, when engaged triggers IFN-γ release. NCR3 and soluble isoforms of Leukocyte Specific Transcript 1 may play a role in inflammatory and infectious diseases. 

Blockade of B7-H3 prolonged the survival of SKOV3 ovarian cancer cell, an in ovarian tumor-bearing mice, miR-29c improved the anti-tumor efficacy of NK-cell by directly targeting B7-H3. miR-29c downregulates B7-H3 and inhibits NK-cell exhaustion. Low levels of mir-29c have been associated with mutated p53 in BC patients. miR-29 miRNAs activate p53 by targeting p85α and CDC42 and upregulate p53 levels that induce apoptosis in a p53-dependent manner. miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting IFN-γ

Besides (intron predominant) human ALU repeats, reverse complementary sequences between introns bracketing circRNAs are highly enriched in RNA editing or hyper-editing events. Knockdown of double stranded RNA-editing enzyme - ADAR1 significantly and specifically upregulated circRNA expression. In its absence (interferon stimulating) oligoadenylate synthetase (OAS) can be activated by self-dsRNA (in contrast to viral dsRNA), resulting in RNase L activity and cell death. Conversely, OASL1 expression enhanced RIG-I-mediated IFN induction. In cells absent of p53, immunogenic, endogenous mitochondrial dsRNA are produced and processed by the OAS/RNase L system presenting a novel mechanism in diseases with aberrant immune responses. IFN-γ restores the impaired function of RNase L and induces mitochondria-mediated apoptosis in lung cancer. The p53—OAS axis, in mitochondrial RNA processing may prevent self-nucleic acid such as dsRNA from aberrantly activating innate immune responses.

A plethora of evidence supports bottom up approach to personalized therapy. A p53 intron1-mRNA regulatory loop, as a potential mechanism in IFN responses to infection and disease may be diagnostic. Pre-clinical research, presently underway will establish whether p53 is diagnostic for specific selections of a biopsy to educate NK cells and trigger effective immune response.



Monday, March 8, 2021

Custom Immunotherapy To Address Dimorphic Complexities.

Dimorphic relationships between genes on Chromosome (Chr)6, encoding Human Leukocyte Antigens (HLA) and those on Chr19, encoding Killer-cell immunoglobulin-like receptors (KIRs) may eventually uncover important information as to how, why and when Natural Killer (NK) cells determine self restraint or attack cells infected by pathogens and disease. These proteins emerge from their respective zones, on each chromosome that have and continue to be subject to frequent recombination events.


The active region of Chr19 has a long history of recombinations that have and continue to define the expression patterns of telomeric and centromeric proportions of KIR gene's encoding receptors that bind cells presenting MHC class 1, HLA haplotype combinations that vary significantly across tissues in different population groups. Adding complexity, HLA genes on Chr6 are also subject to significant recombination making the dimorphic functional HLA-KIR interactions difficult to predict. 

Studies across population groups reveal the great diversity of HLA-KIR dimorphisms. The Southern Han centromeric KIR region encodes strong, conserved, inhibitory HLA-C-specific receptors, and the telomeric region provides a high number and diversity of inhibitory HLA-A and -B-specific receptors. In all these characteristics, the Chinese Southern Han represent other East Asians, whose NK cell repertoires are thus enhanced in quantity, diversity, and effector strength, likely augmenting resistance to endemic viral infections.

One study goes much further suggesting that functional interactions between KIR and HLA modify risks of basal cell carcinoma (BCC) and squamous cell carcinomas (SCC) and that KIR B haplotypes provide selective pressure for altered p53 in BCC tumors. This preference implicates multi-modal p53 mechanisms that are also known to upregulate NK ligands, induce HLA-A11 assembly against Epstein Bar Virus and bind a frequently mutated p53 peptide in a complex with HLA-A and presented at the cell surface that prevent T-Cell response. In support, selected p53 mutations altering protein stability can modulate p53 presentation to T cells, leading to a differential immune reactivity inversely correlated with measured p53 protein levels.

In addition to KIR, adaptive NKG2C+ NK cells display fine peptide specificity selectively to recognize HCMV strains that differed by a single substitution in the HLA-E-binding UL40-derived peptide during infection. Distinct peptides controlled the degree of proliferation in synergy with pro-inflammatory cytokines. Viral peptides are known to augment inhibition at NKG2A. Conversely, NKG2A+ NK cells sense MHC class I downregulation more efficiently than KIRs. Thus, both receptor:ligand systems appear to have complementary functions in recognizing changes in MHC class I.

Polymorphic landscapes across HLA, KIR and NKG receptor repertoires coupled with receptor:ligand haplotype cross referencing makes it near impossible to predict therapeutic targets across the breadth of disease and disease combinations that affect populations. A recent KIR-HLA co-existence study of haplotypes in Breast Cancer patients and controls highlights this complexity. 

Genetic signatures that target discovery of desired cell functionality to select preferential cells/tissues from micro environments used to educate and license autologous or allogeneic NK cells may tease specific, finely tuned, intact receptor repertoires. Once licensing efficacy is reached, expanding NK cell populations and applying them to act upon previously unrecognizable cells of a patient becomes the next frontier of immune therapy. This is the exciting work presently being undertaken by researchers and staff working with Precision Autology using Codondex methodologies. 



Saturday, February 13, 2021

Cell's with an Index like Google?

Its been a while since I last wrote about DNA repeats or their RNA descendants. In that time advanced research has emerged relating repeats to increasing numbers of viral or other disease. Generally the repeats of interest here can be either long or short sequences of nucleotides that from part of an unspliced gene. Logically, counts of long sequences that repeat would be less than short sequences, but when normalized to their respective nucleotide lengths the indexed results can shift the relative order of repeating sequences quite dramatically.

In most knowledge systems repeats in low level data present redundancy and opportunity to improve efficacy in local or global upstream processes acting on that data. We see this in the structure of efficient alphabets that had a significant impact on whether or not a language survived continuous use. Why use ten words when precise meaning, including abstracts can be derived from three. Or why alpha when, at least for some period in the language history alphanumeric made it more effective? 

Search engines reduce their primary index to the least redundant data set used to drive efficient data access by upstream requests and processes to satisfy any query. However, at the storage level, data redundancy is permitted because energy efficiency is gained. Similarly genetic DNA is massively redundant. Redundant data stores can make highly indexed systems more efficient because frequently accessed data elements are more accessible at multiple locations and parallel processes can more efficiently satisfy upstream requests.

Repetitive sequences constitute 50%–70% of the human genome. Some of these can transpose positions, these transposable elements (TE's) are DNA transposons and retrotransposons. The latter are predominant in most mammals and can be further divided into long terminal repeat (LTR)-containing endogenous retrovirus transposons and non-LTR transposons including short interspersed nuclear elements (SINEs) and long interspersed nuclear elements (LINEs). The most abundant subclass of SINEs comprises primate-specific Alu elements in human with more abundant GC-rich DNA. Humans have up to 1.4 million copies of these repeats, which constitute about 10.6% of the genomic DNA. Long interspersed element-1 (LINE1 or L1), are abundant in AT-rich DNA, constitute 19% of the human genome and make up the largest proportion of transposable element-derived sequences.

Most TE classes are primarily involved in reduced gene expression, but Alu elements are associated with up regulated gene expression. Intronic Alu elements are capable of generating alternative splice variants in protein-coding genes that illustrate how Alu elements can alter protein function or gene expression levels. Non-coding regions were found to have a great density of TEs within regulatory sequences, most notably in repressors. TEs have a global impact on gene regulation that indicates a significant association between repetitive elements and gene regulation.

In liquid systems, phase separation is one of the most fundamental phase transition phenomena and ubiquitous in nature. De-mixing of oil and water in salad dressing is a typical example. The discovery of biological phase separation in living cells led to the identification that phase-separation dynamics are controlled by mechanical relaxation of the network-forming dense phase, where the limiting process is permeation flow of the solvent for colloidal suspensions and heat transport for pure fluids. The application of this derived governing universal law is a step to understanding and defining the liquid biological indexing equivalence of data-processing systems and inherent genetic redundancy.

Repeats have been widely implicated. In plant immunity a TE has been domesticated through histone marks and generation of alternative mRNA isoforms that were both directly linked to immune response to a particular pathogen. p53 transcription sites evolved through epigenetic methylation, deamination and histone regulation that constituted a universal mechanism found to generate various transcription-factor binding sites in short TE's or Alu repeats. In disease cytoplasmic synthesis of Alu cDNA was implicated in age related macular degeneration and there is transient increase of nearly 20-fold in the levels of Alu RNA during stress, viral infection and cancer.

In chromosomal DNA, each sequence, relative to its length may conveniently describe a phase-separated indexed location and method for discovery. Repeats within genetic DNA may present precisely sensitive phase-separated guidance to drive histone, epigenetic and transcription factors to specific genetic locations at the cells' 'end-of-line' from where the genetic response to upstream membrane bound changes begin.





 

Tuesday, January 26, 2021

Systolic Blood Pressure and Innate Immunity vs. the Cancer Brain

Participants with a valid heart disease phenotype (atherosclerosis) were identified in a MESA blood pressure analysis conducted over 10 years. The valid group varied from 770 to 1113 patients from whom further blood analysis queried a primary and exploratory hypothesis of immune cell subsets. Four statistically significant innate cell subsets were discovered to be associated with Systolic blood pressure (SBP); Natural Killer (NK) cells, gamma delta T cells and classical monocytes.

Separately, an analysis of 7017 individuals from 6 international studies of gene expression signatures for SBP, diastolic blood pressure (DBP) and hypertension (HTN) found 7717 genes of which 34 were most differentialy expressed. Enrichment analysis for the systolic and diastolic gene group's associated to NK cell mediated cytotoxicity and 13 other pathways including antigen processing and inflammatory response, pointing strongly to innate and adaptive immunity. MYADM was the only gene identified for all groups SBP, DBP and HTN.

MYADM controls endothelial barrier function through ezrin, radixin, and moesin (ERM)-dependent regulation of ICAM-1 expression. ERM expression is required for ICAM-1 expression in response to MYADM suppression or TNF-α. ICAM-1 is a paradigmatic adhesion receptor that regulates leukocyte adhesion together with integrin LFA-1. This connection between endothelial membrane and cortical actin cytoskeleton appears to modulate the inflammatory response at the blood tissue barrier. 

Pressure overload activates the sympathetic nervous system (SNS) and up-regulates p53 expression in the cardiac endothelium and in bone marrow (BM) cells. Increased p53 expression promotes endothelial-leukocyte cell adhesion and initiates inflammation in cardiac tissue, which exacerbates systolic dysfunction. SNS activates, at least by significant increase of circulating norepinephrine (NE), which up-regulates p53 expressions, while forced expression of p53 increased ICAM-1 expression. 

On endothelial cells SNS is mediated via catecholamine-β2-adrenergic signaling, which up-regulates the production of reactive oxygen species (ROS), activates p53 and induces cellular senescence. Immune cells, including macrophages, monocytes, NK cells, B and T cells express the β2-adrenergic receptor and catecholamine. During pressure overload, NE cultured macrophages up-regulated p53 expression, whereas introduction of p53 increased Itgal (LFA-1) expression (which binds ICAM-1). Treatment with NE increased ROS, which was attenuated after inhibition of β2- adrenergic signaling in macrophages. Endothelial cell–macrophage interaction via NE-ROS-p53 signaling induces up-regulation of adhesion molecules, thus contributing to cardiac inflammation and systolic dysfunction.

During hypertension the vascular endothelium activates monocytes, in part through ROS by a loss of nitric oxide (NO) signaling, increased release of IL-6, hydrogen peroxide and a parallel increase in STAT activation in adjacent monocytes. NO inhibits formation of intermediate monocytes and STAT3 activation. Humans with hypertension have increased intermediate and non-classical monocytes and  intermediate monocytes demonstrate evidence of STAT3 activation. Mice with experimental hypertension exhibit increased aortic and renal infiltration of monocytes, dendritic cells, and macrophages with activated STAT3.

A senescence-associated secretory phenotype (SASP) was induced in epithelial cells after DNA damage of sufficient magnitude. In premalignant epithelial cells SASPs induced an epithelial–mesenchyme transition and invasiveness, hallmarks of malignancy by a paracrine mechanism that largely depended interleukin (IL)-6 and IL-8. Strikingly, loss of p53 and gain of oncogenic RAS exacerbated the pro-malignant activities. This suggests a cell-non-autonomous mechanism by which p53 can restrain and oncogenic RAS can promote the development of age-related cancer by altering the tissue microenvironment. Oncogenic signaling pathways inhibit the p53 gene transcription rate through a mechanism involving Stat3, which binds to the p53 promoter in vitro and in vivo. Blocking Stat3 in cancer cells up-regulates expression of p53, leading to p53-mediated tumor cell apoptosis. 

Induced stretch or stretch from pressure overload may engage a non-autonomous, p53 centric micro-mechanical mechanism that escalates or deescalates innate responses against cells functioning outside the mechanical ranges that macrophages or NK cells permit. Thus, the neuro-immune extension through SNS signaling, may begin with circulating blood pressure or stretch promoted through inflammation

Sunday, January 10, 2021

Genetic Eruption and p53 Response!


L1 are a class of transposable DNA elements found in 17% of the genome that are evolutionarily associated with primitive viral origins. Around 100 have retained the ability to retrotranspose. Without restraint they can interrupt the genome through insertions, deletions, rearrangements, and copy number variations. L1 activity has contributed to instability and evolution of genomes, and is tightly regulated by DNA methylation, histone modifications, and piRNA. They can further impact genome variation by mispairing and unequal crossing-over during meiosis due to its repetitive DNA sequences. Indeed, meiotic double-strand breaks are the proximal trigger for retrotransposon eruptions as highlighted in animals lacking p53.

189 gastrointestinal cancer patients across three cancer types: 95 stomach, colorectal esophageal were examined for any aberration in DNA repair pathways that could be associated with L1 retro-transposition. Out of 15 DNA repair pathways, only the TP53 repair pathway showed a significant association. L1 retro-transposition is inversely correlated with expression of immunologic response genes including interferons. Frequent TP53 mutations in tumors with a higher load of L1 insertions suggest the critical role of TP53 in restricting retrotransposons as a guardian of L1 expression and cancer immunity.

A screen of 172 open reading frames (orfs), of unknown genetic function across several human viruses was designed to discover novel interactions with p53. The orfs encoded viral proteins, miRNA's and lncRNA's. The ORFEOME project was based on the hypothesis that every virus should encode some functions that interfere with the p53 signaling network. The methods present a broad net by screening for interactions without necessarily defining how interactions arise.

The DNA damage response (DDR) pathway stabilizes p53 leading to increased nuclear relocation, binding to p53 response elements, rearrangement of chromatin and transcription of p53 target genes. Any of the multiple p53 related interactions along the way is a potential target of translated viral proteins on the function of p53. 

p53 is also induced in response to viral infections as a downstream transcriptional target of type I interferon (IFN) signaling. Cells with functional p53 exhibited markedly decreased viral replication early after infection. This early inhibition of viral replication was mediated both in vitro and in vivo by a p53-dependent enhancement of IFN signaling by the induction of genes containing IFN-stimulated response elements. p53 also contributed to an increase in IFN release from infected cells. This p53-dependent enhancement of IFN signaling is dependent to a great extent on p53 activation and transcription of IFN regulatory factor 9, a central component of the IFN-stimulated gene factor 3 complex. Thus p53 contributes to innate immunity by enhancing IFN-dependent antiviral activity independent of its functions as a proapoptotic and tumor suppressor gene.

p53 likely cooperates with histone and DNA methylation to silence specific retroelements. In the zebrafish model, it was shown that p53-dependent H3K9me3 methylation, in the promoter region of a synthetic human LINE1 element mapped to a known p53-binding site. Some evidence in human cell lines suggests that p53 can physically interact with both H3K9 tri-methyltransferases and DNA methyltransferases. In basal stress-free conditions, unacetylated p53 is pre-bound to many target genes together with SET - a repressor protein, which mediates repression of p53 target genes. Additionally, p53 as a master regulator of transcription might regulate gene expression of key epigenetic or piRNA factors. 

Through L1's we get a sense of p53's interconnectedness to DNA damage, viral replication, cancer and immunity. In a way we can sympathize with it, especially when overloaded by viral infiltration and eruption. Its understandable how, under those conditions double stranded DNA breaks and pathway impediments compromise its ability to be guardian of the genome!

Monday, December 28, 2020

Natural Killers at the Neuro-Immune Axis!

Much has been said about the role Natural Killer (NK) cells play in positively and negatively influencing events in tissues and cells. Summarized facts about the healthy state of NK cells in humans and animals explain how innate immune cells, including NK cells differ from adaptive immune cells. One significant feature of NK cells is that they can act independently of MHC antigen presentations and that makes them tantalizing, but enormously challenging for scientists seeking to embrace their  influence over cells and their killing capabilities.

The variety and combination of inhibitory and activating receptors differentially expressed by as many as 30,000 human NK cell subsets makes heterogeneity difficult to relate across different conditions, organs and tissue types. Notwithstanding, positive rates of overall patient survival resoundingly corelated to the presence of as few as one NK cell infiltrating a tumor in a microscopic field.  

Innate immune cells including NK and macrophages have also been directly tied to conditions of neurological pain and more specifically to afferent and efferent fibers that signal through the vagus nerve. In these models at the immune-neurological interface similarities exists and both organs must interact for proper function. 

In each of these organs communication is mediated by direct cellular contact eg. synapse formation and via soluble mediators like cytokines or neurotransmitters that also communicate bi-directionally between cells of each system. The nervous and immune systems can influence each other’s activity because immune cells express neurotransmitter receptors, and neurons express cytokine receptors. Immune cells can synthesize and release neurotransmitters themselves, thus using neurotransmitter-mediated pathways via autocrine and paracrine mechanisms. This may indicate that NK cells extend nerve end signaling further into tissues and at a cellular level. 

A recent paradigm in physiology describes the existence of neuro-immune cell units, at an organ-tissue level and identifies the enormous complexity inherent in this globally unifying approach that also connects neuro-immune-gut, at least in Parkinson's disease.

Parkinson’s is a brain disorder where certain nerve cells slowly die and symptoms worsen. The risk of developing the condition increases with age, but in certain patients the illness is caused by defects in two proteins, PINK1 and parkin. NK cells are capable of homing to the central nervous system in neurological disorders that exhibit exacerbated inflammation and inhibit hyperactivated microglia. Recently, a study demonstrated that NK cells scavenge alpha-synuclein aggregates and systemic depletion of NK cells results in exacerbated neuropathology in a mouse model of alpha-synucleinopathy, making NK cells highly relevant in Parkinson’s disease.

We recently described a mechanism by which the sentinel state of NK cells is impaired and suggested the senescent phenotype, induced by age related mitophagy could be the primary cause. Increase in mitophagy (mitochondrial autophagy) is age-dependent and abrogated by PINK1 or parkin deficiency suggesting, in Parkinson's disease compromised mitophagy is associated with neurological degeneration. Further  PINK1 and Parkin, which are regulated by p53 specifically repress mitochondrial antigen presentation of both MHC classes. Therefore, excessive PINK1 or parkin increases rates of NK cell mitophagy and repress the presentation of mitochondrial antigens for MHC classes at the axis of this neuro-immune related disease.

The healthy state of NK cells at the axis of neuro-immune systems may indeed have more far reaching implications for the future of human diseases and therapies.